Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(12): 14351-14355, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38559986

RESUMO

An innovative approach of microwave plasma was utilized to convert natural gas into tar, from which a highly graphitizable pitch was derived using fractional distillation. The natural gas-derived pitch (NGDP) was thoroughly characterized, and the graphitizability of the carbonized NGDP was assessed using polarized light microscopy. The NGDP and, for comparison, needle coke, petroleum coke, and shot coke were subjected to graphitization heat treatment (GR) at 2500 °C. Results indicate that the graphitizability of the NGDP exceeds those of all industrial standard cokes. The GR-NGDP showed the highest degree of graphitization and crystallite size among all samples.

2.
ACS Omega ; 9(3): 3384-3391, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38284088

RESUMO

This work investigates the structural characteristics and graphitizability of tars obtained from thermal pyrolysis versus the reactive microwave (MW) plasma pyrolysis of coals. Powder River Basin (PRB) coal tars obtained by thermal pyrolysis have been compared with tars obtained from MW plasma pyrolysis containing H2. To study the effect of coal rank and MW plasma environment, the PRB tars have been compared with Middle Kittanning (MK) coal tars obtained from an argon-hydrogen MW plasma (hp) and an argon-CO2 MW plasma (cdp) environment. Fourier transform infrared spectroscopy has been used for investigating the structural differences among the tar samples. The tars have been graphitized (GR-) at 2500 °C and the graphitic quality assessment has been performed using X-ray diffraction and transmission electron microscopy. MW plasma-derived tars have higher aromaticity, lower condensation, and lower oxygenated molecules compared to thermally derived tars. These advantageous features of MW plasma-derived tars lead to the formation of crystallites several times larger than thermally derived tars after graphitization. When considering coal of the same rank (bituminous), the choice of the MW plasma environment has a substantial impact on the graphitic quality of the tars. The utilization of MW plasma containing H2 leads to a significant increase in both the crystallite diameter (by 60%) and stacking height (by 40%) compared to MW plasma containing CO2. Furthermore, within the same MW plasma environment, the coal rank plays a significant role in determining the crystallite diameter and stacking height of the GR-tars. In particular, GR-MK tar obtained from hp exhibits a 135% larger crystallite diameter and 85% larger stacking height compared with GR-PRB tar obtained from hp. These findings demonstrate the potential to tailor the composition of coal-derived tars and consequently influence their graphitizability by adjusting the reactive environment during MW plasma treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa