RESUMO
Rainbow trout Oncorhynchus mykiss (~ 180 g, 16 °C and < 5 kg m-3) that were feed deprived and kept in total darkness showed a significant increase in critical swimming speed (U crit) between 1 and 12 days of deprivation (from 3.35 to 4.46 body length (BL) s-1) with no increase in maximum metabolic rate (MMR). They also showed a significant decrease in the estimated metabolic rate at 0 BL s-1 over 12 days which leads to a higher factorial aerobic metabolic scope at day 12 (9.38) compared to day 1 (6.54). Routine metabolic rates were also measured in ~ 90 g rainbow trout that were swimming freely in large circular respirometers at 16 °C. These showed decreasing consumption oxygen rates and reductions in the amount of oxygen consumed above standard metabolic rate (a proxy for spontaneous activity) over 12 days, though this happened significantly faster when they were kept in total darkness when compared to a 12:12-h light-dark (LD) photoperiod. Weight loss during this period was also significantly reduced in total darkness (3.33% compared to 4.98% total body weight over 12 days). Immunological assays did not reveal any consistent up- or downregulation of antipathogenic and antioxidant enzymes in the serum or skin mucus of rainbow trout between 1 and 12 days of feed and light deprivation. Overall, short periods of deprivation do not appear to significantly affect the performance of rainbow trout which appear to employ a behavioural energy-sparing strategy, albeit more so in darkness than under a 12:12-h LD regime.
Assuntos
Metabolismo Energético/fisiologia , Privação de Alimentos , Oncorhynchus mykiss/metabolismo , Fotoperíodo , Natação/fisiologia , Animais , Consumo de OxigênioRESUMO
The present study was undertaken to examine cardiac responses to some of the temperature challenges that eels encounter in their natural environment. The contractile properties of ventricular muscle was studied on electrically paced tissue strips after long term acclimation at 0 °C, 10 °C, or 20 °C, and following acute ± 10 °C temperature changes. The time-course of contraction, and thus maximal attainable heart rates, was greatly influenced by working temperature, but was independent of acclimation history. The absolute force of contraction and power production (i.e. the product of force and stimulation frequency) was significantly influenced by acute temperature decrease from 20 °C to 10 °C. The role of adrenaline as a modulator of contraction force, power production, rates of contraction and relaxation, and minimum time in contraction was assessed. Increased adrenergic tonus elicited a positive inotropic, temperature-dependent response, but did not influence twitch duration. This suggests that adrenaline acts as an agent in maintaining an adequate contractile force following temperature challenges. A significant increased relative ventricular mass was observed in 0 °C and 10 °C-acclimated eels compared to 20 °C-acclimated, which suggests that at low temperatures, eels secure cardiac output by heart enlargement. Inhibition of specific sarcolemmal Ca(2+) channels by selective drug treatment revealed that, depending on temperature, L-type channels is the major entry site, but also that reverse-mode Na(+)/Ca(2+)-exchange and store operated calcium entry contribute to the pool of activator Ca(2+).
Assuntos
Anguilla/fisiologia , Migração Animal , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Estações do Ano , Temperatura , Animais , Cálcio/metabolismo , Trocador de Sódio e Cálcio/metabolismoAssuntos
Ácidos Docosa-Hexaenoicos/metabolismo , Aprendizagem/efeitos dos fármacos , Percas/fisiologia , Fosfolipídeos/metabolismo , Percepção Visual/efeitos dos fármacos , Ração Animal/análise , Animais , Dieta/veterinária , Ácidos Docosa-Hexaenoicos/administração & dosagem , Relação Dose-Resposta a Droga , Emulsões/administração & dosagem , Emulsões/metabolismo , Larva/crescimento & desenvolvimento , Larva/fisiologia , Percas/crescimento & desenvolvimento , Fosfolipídeos/administração & dosagem , Estresse Fisiológico/efeitos dos fármacosRESUMO
Individual variation in the way animals cope with stressors has been documented in a number of animal groups. In general, two distinct sets of behavioural and physiological responses to stress have been described: the proactive and the reactive coping styles. Some characteristics of stress coping style seem to be coupled to the time to emerge of fry from spawning redds in natural populations of salmonid fishes. In the present study, behavioural and physiological traits of stress coping styles were compared two and five months after emergence in farmed Atlantic salmon (Salmo salar), using individuals with an early or late time to emerge. Initially, compared to late emerging individuals, early emerging individuals showed a shorter time to resume feeding after transfer to rearing in isolation. Resumption of feeding after isolation was suggested to be related to boldness behaviour, rather than hunger, in the present study. This observation was repeated five months after emergence, demonstrating behavioural consistency over time in this trait. However, in other traits of proactive and reactive stress coping styles, such as social status, resting metabolism or post stress cortisol concentrations, early and late emerging individuals did not differ. Therefore, this study demonstrates that boldness in a novel environment is uncoupled from other traits of the proactive and reactive stress coping styles in farmed salmonids. It is possible that this decoupling is caused by the low competitive environment in which fish were reared. In natural populations of salmonids, however, the higher selection pressure at emergence could select for early emerging individuals with a proactive coping style.
Assuntos
Adaptação Psicológica/fisiologia , Comportamento Animal/fisiologia , Salmo salar/fisiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Análise de Variância , Animais , Inteligência Emocional , Meio Ambiente , Comportamento Alimentar/fisiologia , Feminino , Hidrocortisona/metabolismo , Masculino , Tempo de Reação/fisiologia , Meio Social , Fatores de TempoRESUMO
The volume of the primary (PCS) and secondary (SCS) circulatory system in the Atlantic cod Gadus morhua was determined using a modified dye dilution technique. Cod (N=10) were chronically cannulated in the second afferent branchial artery with PE-50 tubing. Evans Blue dye was bound to harvested fish plasma at a concentration of 1 mg dye ml(-1) plasma, and injected at a concentration of 1 mg kg(-1) body mass. Serial sampling from the cannula produced a dye dilution curve, which could be described by a double exponential decay equation. Curve analysis enabled the calculation of the primary circulatory and total distribution volume. The difference between these volumes is assumed to be the volume of the SCS. From the dilution curve, it was also possible to calculate flow rates between and within the systems. The results of these experiments suggest a plasma volume in the PCS of 3.42+/-0.89 ml 100 g(-1) body mass, and in the SCS of 1.68+/-0.35 ml 100 g(-1) body mass (mean +/- S.D.) or approximately 50% that of the PCS. Flow rates to the SCS were calculated as 2.7% of the resting cardiac output. There was an allometric relationship between body mass and blood volumes. Increasing condition factor showed a tendency towards smaller blood volumes of the PCS, expressed as percentage body mass, but this was not evident for the volume of the SCS.