Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 8(6): 506-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21552255

RESUMO

We describe a conditional in vivo protein-trap mutagenesis system that reveals spatiotemporal protein expression dynamics and can be used to assess gene function in the vertebrate Danio rerio. Integration of pGBT-RP2.1 (RP2), a gene-breaking transposon containing a protein trap, efficiently disrupts gene expression with >97% knockdown of normal transcript amounts and simultaneously reports protein expression for each locus. The mutant alleles are revertible in somatic tissues via Cre recombinase or splice-site-blocking morpholinos and are thus to our knowledge the first systematic conditional mutant alleles outside the mouse model. We report a collection of 350 zebrafish lines that include diverse molecular loci. RP2 integrations reveal the complexity of genomic architecture and gene function in a living organism and can provide information on protein subcellular localization. The RP2 mutagenesis system is a step toward a unified 'codex' of protein expression and direct functional annotation of the vertebrate genome.


Assuntos
Mutagênese Insercional/métodos , Proteoma/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Modelos Animais , Dados de Sequência Molecular , Proteômica/métodos
2.
Elife ; 92020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32779569

RESUMO

One key bottleneck in understanding the human genome is the relative under-characterization of 90% of protein coding regions. We report a collection of 1200 transgenic zebrafish strains made with the gene-break transposon (GBT) protein trap to simultaneously report and reversibly knockdown the tagged genes. Protein trap-associated mRFP expression shows previously undocumented expression of 35% and 90% of cloned genes at 2 and 4 days post-fertilization, respectively. Further, investigated alleles regularly show 99% gene-specific mRNA knockdown. Homozygous GBT animals in ryr1b, fras1, tnnt2a, edar and hmcn1 phenocopied established mutants. 204 cloned lines trapped diverse proteins, including 64 orthologs of human disease-associated genes with 40 as potential new disease models. Severely reduced skeletal muscle Ca2+ transients in GBT ryr1b homozygous animals validated the ability to explore molecular mechanisms of genetic diseases. This GBT system facilitates novel functional genome annotation towards understanding cellular and molecular underpinnings of vertebrate biology and human disease.


The human genome counts over 20,000 genes, which can be turned on and off to create the proteins required for most of life processes. Once produced, proteins need move to specific locations in the cell, where they are able to perform their jobs. Despite striking scientific advances, 90% of human genes are still under-studied; where the proteins they code for go, and what they do remains unknown. Zebrafish share many genes with humans, but they are much easier to manipulate genetically. Here, Ichino et al. used various methods in zebrafish to create a detailed 'catalogue' of previously poorly understood genes, focusing on where the proteins they coded for ended up and the biological processes they were involved with. First, a genetic tool called gene-breaking transposons (GBTs) was used to create over 1,200 strains of genetically altered fish in which a specific protein was both tagged with a luminescent marker and unable to perform its role. Further analysis of 204 of these strains revealed new insight into the role of each protein, with many having unexpected roles and localisations. For example, in one zebrafish strain, the affected gene was similar to a human gene which, when inactivated, causes severe muscle weakness. These fish swam abnormally slowly and also had muscle problems, suggesting that the GBT fish strains could 'model' the human disease. This work sheds new light on the role of many previously poorly understood genes. In the future, similar collections of GBT fish strains could help researchers to study both normal human biology and disease. They could especially be useful in cases where the genes responsible for certain conditions are still difficult to identify.


Assuntos
Técnicas de Silenciamento de Genes , Biblioteca Gênica , Genes Reporter , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , RNA Mensageiro/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
3.
Mob DNA ; 7: 6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27042235

RESUMO

BACKGROUND: The revolutionary concept of "jumping genes" was conceived by McClintock in the late 1940s while studying the Activator/Dissociation (Ac/Ds) system in maize. Transposable elements (TEs) represent the most abundant component of many eukaryotic genomes. Mobile elements are a driving force of eukaryotic genome evolution. McClintock's Ac, the autonomous element of the Ac/Ds system, together with hobo from Drosophila and Tam3 from snapdragon define an ancient and diverse DNA transposon superfamily named hAT. Other members of the hAT superfamily include the insect element Hermes and Tol2 from medaka. In recent years, genetic tools derived from the 'cut' and 'paste' Tol2 DNA transposon have been widely used for genomic manipulation in zebrafish, mammals and in cells in vitro. RESULTS: We report the purification of a functional recombinant Tol2 protein from E.coli. We demonstrate here that following microinjection using a zebrafish embryo test system, purified Tol2 transposase protein readily catalyzes gene transfer in both somatic and germline tissues in vivo. We show that purified Tol2 transposase can promote both in vitro cutting and pasting in a defined system lacking other cellular factors. Notably, our analysis of Tol2 transposition in vitro reveals that the target site preference observed for Tol2 in complex host genomes is maintained using a simpler target plasmid test system, indicating that the primary sequence might encode intrinsic cues for transposon integration. CONCLUSIONS: This active Tol2 protein is an important new tool for diverse applications including gene discovery and molecular medicine, as well as for the biochemical analysis of transposition and regulation of hAT transposon/genome interactions. The measurable but comparatively modest insertion site selection bias noted for Tol2 is largely determined by the primary sequence encoded in the target sequence as assessed through studying Tol2 protein-mediated transposition in a cell-free system.

4.
PLoS One ; 10(6): e0130688, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110643

RESUMO

Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP), an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish). In vivo selection for skin-specific expression of gene-break transposon (GBT) mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes--fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a--had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a) revealed a novel requirement for a Neuregulin 2a (Nrg2a)-ErbB2/3-AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF) morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a-ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity and cell shape changes serves as a crucial mechanism of epithelial morphogenesis.


Assuntos
Nadadeiras de Animais/embriologia , Neurregulinas/metabolismo , Proteínas Oncogênicas v-erbB/metabolismo , Organogênese/genética , Pele/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Alelos , Nadadeiras de Animais/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Mutagênese Insercional , Neurregulinas/genética , Proteínas Oncogênicas v-erbB/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Pele/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
5.
Methods Cell Biol ; 104: 137-49, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21924161

RESUMO

DNA transposons are effective chromosomal engineering vehicles for making transgenic zebrafish. We describe both autonomous and non-autonomous transposable elements, and we compare and contrast popular transposon systems. The Tol2 system is a robust gene transfer tool and has been selected as the primary transposon platform, facilitating the development of an array of reagents readily shared within the zebrafish community. We present common transposon and transposase vectors within the field based on the Tol2 system. We describe methods with a high success rate of generating transgenic zebrafish using Tol2 vectors, including key quality control steps during the transgenesis process. Together, these data should enable the ready generation of transgenic zebrafish for scientific inquiry.


Assuntos
Animais Geneticamente Modificados , Elementos de DNA Transponíveis , Mutagênese Insercional/métodos , Peixe-Zebra/genética , Animais , Clonagem Molecular/métodos , Testes Genéticos/métodos , Vetores Genéticos , Mutação em Linhagem Germinativa , Microinjeções/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa