Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Epidemiol ; 39(6): 623-641, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581608

RESUMO

Aging is a multifaceted and intricate physiological process characterized by a gradual decline in functional capacity, leading to increased susceptibility to diseases and mortality. While chronological age serves as a strong risk factor for age-related health conditions, considerable heterogeneity exists in the aging trajectories of individuals, suggesting that biological age may provide a more nuanced understanding of the aging process. However, the concept of biological age lacks a clear operationalization, leading to the development of various biological age predictors without a solid statistical foundation. This paper addresses these limitations by proposing a comprehensive operationalization of biological age, introducing the "AccelerAge" framework for predicting biological age, and introducing previously underutilized evaluation measures for assessing the performance of biological age predictors. The AccelerAge framework, based on Accelerated Failure Time (AFT) models, directly models the effect of candidate predictors of aging on an individual's survival time, aligning with the prevalent metaphor of aging as a clock. We compare predictors based on the AccelerAge framework to a predictor based on the GrimAge predictor, which is considered one of the best-performing biological age predictors, using simulated data as well as data from the UK Biobank and the Leiden Longevity Study. Our approach seeks to establish a robust statistical foundation for biological age clocks, enabling a more accurate and interpretable assessment of an individual's aging status.


Assuntos
Envelhecimento , Modelos Estatísticos , Humanos , Envelhecimento/fisiologia , Idoso , Pessoa de Meia-Idade , Feminino , Masculino , Longevidade , Adulto , Idoso de 80 Anos ou mais
2.
Clin Epigenetics ; 16(1): 29, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365790

RESUMO

BACKGROUND: Dietary intake of n-3 polyunsaturated fatty acids (PUFA) may have a protective effect on the development of cardiovascular diseases, diabetes, depression and cancer, while a high intake of n-6 PUFA was often reported to be associated with inflammation-related traits. The effect of PUFAs on health outcomes might be mediated by DNA methylation (DNAm). The aim of our study is to identify the impact of PUFA intake on DNAm in the Cooperative Health Research in the Region of Augsburg (KORA) FF4 cohort and the Leiden Longevity Study (LLS). RESULTS: DNA methylation levels were measured in whole blood from the population-based KORA FF4 study (N = 1354) and LLS (N = 448), using the Illumina MethylationEPIC BeadChip and Illumina HumanMethylation450 array, respectively. We assessed associations between DNAm and intake of eight and four PUFAs in KORA and LLS, respectively. Where possible, results were meta-analyzed. Below the Bonferroni correction threshold (p < 7.17 × 10-8), we identified two differentially methylated positions (DMPs) associated with PUFA intake in the KORA study. The DMP cg19937480, annotated to gene PRDX1, was positively associated with docosahexaenoic acid (DHA) in model 1 (beta: 2.00 × 10-5, 95%CI: 1.28 × 10-5-2.73 × 10-5, P value: 6.98 × 10-8), while cg05041783, annotated to gene MARK2, was positively associated with docosapentaenoic acid (DPA) in our fully adjusted model (beta: 9.80 × 10-5, 95%CI: 6.25 × 10-5-1.33 × 10-4, P value: 6.75 × 10-8). In the meta-analysis, we identified the CpG site (cg15951061), annotated to gene CDCA7L below Bonferroni correction (1.23 × 10-7) associated with eicosapentaenoic acid (EPA) intake in model 1 (beta: 2.00 × 10-5, 95% CI: 1.27 × 10-5-2.73 × 10-5, P value = 5.99 × 10-8) and we confirmed the association of cg19937480 with DHA in both models 1 and 2 (beta: 2.07 × 10-5, 95% CI: 1.31 × 10-5-2.83 × 10-5, P value = 1.00 × 10-7 and beta: 2.19 × 10-5, 95% CI: 1.41 × 10-5-2.97 × 10-5, P value = 5.91 × 10-8 respectively). CONCLUSIONS: Our study identified three CpG sites associated with PUFA intake. The mechanisms of these sites remain largely unexplored, highlighting the novelty of our findings. Further research is essential to understand the links between CpG site methylation and PUFA outcomes.


Assuntos
Epigenoma , Ácidos Graxos Ômega-3 , Humanos , Metilação de DNA , Ácidos Graxos , Ácidos Docosa-Hexaenoicos , Proteínas Repressoras
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa