RESUMO
The aim of this study is to visualize and characterize by ultra-high-speed imaging (UHSI) the failure phenomena at the resin-ceramic bonding interface of lithium disilicate (LiSi2) samples bonded with gold-standard protocol (Monobond Plus [MB]) and the nontoxic one (Monobond Etch & Prime [MEP]) subjected to mechanical loading. Unprecedented frame rate, image resolution, and recording time were reached by using the most advanced UHSI camera. The finite element analysis (FEA) of the proposed mechanical test confirmed that the specific design of our samples enables a combined shear and compression stress state, prone to test the bonding interface while being close to physiological stresses. Ten LiSi2 samples were pretreated by gold standard (MB, n = 5) and self-etching primer (MEP, n = 5). Axial compression loading gradually increased until catastrophic failure was performed. As shown by the FEA, the angle between the bonding interface and load direction leads to shear-compression stresses at the resin-ceramic bonding interface. Failure was recorded by UHSI at 300,000 fps. All recorded images were analyzed to segregate events and isolate the origin of fracture. For the first time, thanks to the image recording setup, it was observed that debonding is the first event before breakage, highlighting that sample fracture occurs by interfacial rupture followed by slippage and cohesive failure of materials. Failure mode could be described as mixed. MEP and MB showed similar results and behavior.
Assuntos
Colagem Dentária , Cimentos de Resina , Propriedades de Superfície , Teste de Materiais , Silanos , Ácido Fluorídrico , Cerâmica , Porcelana Dentária , Análise do Estresse DentárioRESUMO
OBJECTIVES: Ceramic veneers restorations may undergo damages, such as cracks, fractures, or debonding. Full-field measurements must be carried out in order to visualize and analyze the strain fields. This paper demonstrates that digital holography permits to investigate the mechanical behavior under stress of a natural incisor and a natural incisor reconstructed with CAD/CAM ceramic veneer. METHODS: The facial surface of a maxillary central incisor is prepared to receive a monolithic ceramic reconstruction manufactured using a chairside computer-aided design and computer aided manufacturing (CAD/CAM) system (Cerec AC® system, Sirona Dental System®, Bensheim, Germany). One incisor is kept intact for comparison. The samples are sectioned longitudinally to obtain a planar observation of the region of interest. A mechanical indentation head and digital holographic set-ups permit a full-field, contact-less and single-shot measurement of the three-dimensional displacement fields at the surface of the tooth sample when subjected to load. Stain fields are then estimated and comparison of the results between two samples can be carried out. RESULTS: 3D displacement, fields and strain fields are measured and highlight the behavior of the region of interest in three directions of space for the ceramic veneer and the natural incisor. The strain maps reveal the local behavior, especially the concentration or the sudden change in strain. The transition zones are clearly observed, particularly for the veneered sample. CONCLUSION: Digital holography highlights the localization of stress concentration zones in regions of interest and yields comparative analysis between samples with different tooth preparations. SIGNIFICANCE: holography permits to visualize and compare the mechanical response of the ceramic veneer and natural tooth. This helps choosing the mechanical properties of the bonding interface.
Assuntos
Holografia , Cerâmica , Desenho Assistido por Computador , Porcelana Dentária , Análise do Estresse Dentário , Facetas Dentárias , Incisivo , Teste de MateriaisRESUMO
X-ray fluorescence was applied to the determination of the chromium-ion content in developed dichromated gelatin after exposure. It was found that the Cr(3+) ions irreversibly linked to the gelatin molecules do not exceed one half of the original concentration of the ions. A similar study was carried out on the hardening of dichromated gelatin during dark reaction: as long as the degree of hardening of the gelatin allowed the chromium ions to migrate out of the film during development, the final Cr(3+) content was less than or equal to one half the original concentration.
RESUMO
Interferometric techniques combined with phase shifting allow computation of the phase that is linked to the displacement of the object under study. The phases before and after displacement are computed from three or more interferograms (called specklegrams when speckle is used as the information carrier). Subtraction of these two phase patterns leads to a raw phase map. Phase unwrapping restores the 2π discontinuities and gives a continuous phase map. The disk-growing algorithm presented allows the inner and the outer propagation of the unwrapping from a growing disk and so avoids the main problem of anisotropic error propagation for noisy phase maps. It works successfully in speckle interferometry.