Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell ; 185(2): 232-234, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-35063071

RESUMO

Technologies for counting protein molecules are enabling single-cell proteomics at increasing depth and scale. New advances in single-molecule methods by Brinkerhoff and colleagues promise to further increase the sensitivity of protein analysis and motivate questions about scaling up the counting of the human proteome.


Assuntos
Proteoma , Proteômica , Humanos , Nanotecnologia
2.
Development ; 150(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37387573

RESUMO

Many developmental processes are regulated post-transcriptionally. Such post-transcriptional regulatory mechanisms can now be analyzed by robust single-cell mass spectrometry methods that allow accurate quantification of proteins and their modification in single cells. These methods can enable quantitative exploration of protein synthesis and degradation mechanisms that contribute to developmental cell fate specification. Furthermore, they may support functional analysis of protein conformations and activities in single cells, and thus link protein functions to developmental processes. This Spotlight provides an accessible introduction to single-cell mass spectrometry methods and suggests initial biological questions that are ripe for investigation.


Assuntos
Regulação da Expressão Gênica , Proteômica , Diferenciação Celular , Espectrometria de Massas , Biossíntese de Proteínas
3.
Nat Methods ; 20(5): 714-722, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37012480

RESUMO

Major aims of single-cell proteomics include increasing the consistency, sensitivity and depth of protein quantification, especially for proteins and modifications of biological interest. Here, to simultaneously advance all these aims, we developed prioritized Single-Cell ProtEomics (pSCoPE). pSCoPE consistently analyzes thousands of prioritized peptides across all single cells (thus increasing data completeness) while maximizing instrument time spent analyzing identifiable peptides, thus increasing proteome depth. These strategies increased the sensitivity, data completeness and proteome coverage over twofold. The gains enabled quantifying protein variation in untreated and lipopolysaccharide-treated primary macrophages. Within each condition, proteins covaried within functional sets, including phagosome maturation and proton transport, similarly across both treatment conditions. This covariation is coupled to phenotypic variability in endocytic activity. pSCoPE also enabled quantifying proteolytic products, suggesting a gradient of cathepsin activities within a treatment condition. pSCoPE is freely available and widely applicable, especially for analyzing proteins of interest without sacrificing proteome coverage. Support for pSCoPE is available at http://scp.slavovlab.net/pSCoPE .


Assuntos
Proteoma , Proteômica , Proteoma/análise , Proteômica/métodos , Espectrometria de Massas , Peptídeos/química , Macrófagos
4.
Nat Methods ; 20(3): 375-386, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864200

RESUMO

Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become technically feasible. While such analysis has the potential to accurately quantify thousands of proteins across thousands of single cells, the accuracy and reproducibility of the results may be undermined by numerous factors affecting experimental design, sample preparation, data acquisition and data analysis. We expect that broadly accepted community guidelines and standardized metrics will enhance rigor, data quality and alignment between laboratories. Here we propose best practices, quality controls and data-reporting recommendations to assist in the broad adoption of reliable quantitative workflows for single-cell proteomics. Resources and discussion forums are available at https://single-cell.net/guidelines .


Assuntos
Benchmarking , Proteômica , Benchmarking/métodos , Proteômica/métodos , Reprodutibilidade dos Testes , Proteínas/análise , Espectrometria de Massas em Tandem/métodos , Proteoma/análise
5.
PLoS Genet ; 19(5): e1010744, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37167320

RESUMO

Stem cell differentiation is a highly dynamic process involving pervasive changes in gene expression. The large majority of existing studies has characterized differentiation at the level of individual molecular profiles, such as the transcriptome or the proteome. To obtain a more comprehensive view, we measured protein, mRNA and microRNA abundance during retinoic acid-driven differentiation of mouse embryonic stem cells. We found that mRNA and protein abundance are typically only weakly correlated across time. To understand this finding, we developed a hierarchical dynamical model that allowed us to integrate all data sets. This model was able to explain mRNA-protein discordance for most genes and identified instances of potential microRNA-mediated regulation. Overexpression or depletion of microRNAs identified by the model, followed by RNA sequencing and protein quantification, were used to follow up on the predictions of the model. Overall, our study shows how multi-omics integration by a dynamical model could be used to nominate candidate regulators.


Assuntos
MicroRNAs , Multiômica , Animais , Camundongos , Diferenciação Celular/genética , MicroRNAs/genética , Transcriptoma , RNA Mensageiro/genética
6.
PLoS Biol ; 20(1): e3001512, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986167

RESUMO

Biological functions arise from protein interactions, which are reflected in the natural variation of proteome configurations across individual cells. Emerging single-cell proteomics methods may decode this variation and empower inference of biological mechanisms with minimal assumptions.


Assuntos
Proteoma/metabolismo , Proteômica/métodos , Análise de Célula Única
7.
J Proteome Res ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663020

RESUMO

Physiological processes, such as the epithelial-mesenchymal transition (EMT), are mediated by changes in protein interactions. These changes may be better reflected in protein covariation within a cellular cluster than in the temporal dynamics of cluster-average protein abundance. To explore this possibility, we quantified proteins in single human cells undergoing EMT. Covariation analysis of the data revealed that functionally coherent protein clusters dynamically changed their protein-protein correlations without concomitant changes in the cluster-average protein abundance. These dynamics of protein-protein correlations were monotonic in time and delineated protein modules functioning in actin cytoskeleton organization, energy metabolism, and protein transport. These protein modules are defined by protein covariation within the same time point and cluster and, thus, reflect biological regulation masked by the cluster-average protein dynamics. Thus, protein correlation dynamics across single cells offers a window into protein regulation during physiological transitions.

8.
Mol Hum Reprod ; 30(7)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870523

RESUMO

Advanced maternal age is associated with a decline in oocyte quality, which often leads to reproductive failure in humans. However, the mechanisms behind this age-related decline remain unclear. To gain insights into this phenomenon, we applied plexDIA, a multiplexed data-independent acquisition, single-cell mass spectrometry method, to analyze the proteome of oocytes from both young women and women of advanced maternal age. Our findings primarily revealed distinct proteomic profiles between immature fully grown germinal vesicle and mature metaphase II oocytes. Importantly, we further show that a woman's age is associated with changes in her oocyte proteome. Specifically, when compared to oocytes obtained from young women, advanced maternal age oocytes exhibited lower levels of the proteasome and TRiC complex, as well as other key regulators of proteostasis and meiosis. This suggests that aging adversely affects the proteostasis and meiosis networks in human oocytes. The proteins identified in this study hold potential as targets for improving oocyte quality and may guide future studies into the molecular processes underlying oocyte aging.


Assuntos
Idade Materna , Meiose , Oócitos , Proteoma , Proteômica , Proteostase , Análise de Célula Única , Humanos , Oócitos/metabolismo , Oócitos/citologia , Feminino , Meiose/fisiologia , Adulto , Proteômica/métodos , Análise de Célula Única/métodos , Proteoma/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Pessoa de Meia-Idade
9.
Mol Cell Proteomics ; 21(1): 100179, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808355

RESUMO

Single-cell tandem MS has enabled analyzing hundreds of single cells per day and quantifying thousands of proteins across the cells. The broad dissemination of these capabilities can empower the dissection of pathophysiological mechanisms in heterogeneous tissues. Key requirements for achieving this goal include robust protocols performed on widely accessible hardware, robust quality controls, community standards, and automated data analysis pipelines that can pinpoint analytical problems and facilitate their timely resolution. Toward meeting these requirements, this perspective outlines both existing resources and outstanding opportunities, such as parallelization, for catalyzing the wide dissemination of quantitative single-cell proteomics analysis that can be scaled up to tens of thousands of single cells. Indeed, simultaneous parallelization of the analysis of peptides and single cells is a promising approach for multiplicative increase in the speed of performing deep and quantitative single-cell proteomics. The community is ready to begin a virtuous cycle of increased adoption fueling the development of more technology and resources for single-cell proteomics that in turn drive broader adoption, scientific discoveries, and clinical applications.


Assuntos
Proteínas , Proteômica , Peptídeos , Proteômica/métodos , Análise de Célula Única/métodos
10.
Mol Cell Proteomics ; 21(7): 100254, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654359

RESUMO

All human diseases involve proteins, yet our current tools to characterize and quantify them are limited. To better elucidate proteins across space, time, and molecular composition, we provide a >10 years of projection for technologies to meet the challenges that protein biology presents. With a broad perspective, we discuss grand opportunities to transition the science of proteomics into a more propulsive enterprise. Extrapolating recent trends, we describe a next generation of approaches to define, quantify, and visualize the multiple dimensions of the proteome, thereby transforming our understanding and interactions with human disease in the coming decade.


Assuntos
Proteoma , Proteômica , Humanos , Proteoma/metabolismo , Proteômica/métodos
11.
Trends Biochem Sci ; 44(2): 95-109, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30473427

RESUMO

The existence of eukaryotic ribosomes with distinct ribosomal protein (RP) stoichiometry and regulatory roles in protein synthesis has been speculated for over 60 years. Recent advances in mass spectrometry (MS) and high-throughput analysis have begun to identify and characterize distinct ribosome stoichiometry in yeast and mammalian systems. In addition to RP stoichiometry, ribosomes host a vast array of protein modifications, effectively expanding the number of human RPs from 80 to many thousands of distinct proteoforms. Is it possible that these proteoforms combine to function as a 'ribosome code' to tune protein synthesis? We outline the specific benefits that translational regulation by specialized ribosomes can offer and discuss the means and methodologies available to correlate and characterize RP stoichiometry with function. We highlight previous research with a focus on formulating hypotheses that can guide future experiments and crack the ribosome code.


Assuntos
Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/metabolismo , Animais , Ensaios de Triagem em Larga Escala , Humanos , Espectrometria de Massas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
12.
Trends Biochem Sci ; 44(5): 478-479, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30792028

RESUMO

Contrary to the textbook model, recent measurements demonstrated unexpected diversity in ribosomal composition that likely enables specialized translational functions. Methods based on liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS) enable direct quantification of ribosomal proteins with high specificity, accuracy, and throughput. LC-MS/MS can be 'top-down', analyzing intact proteins, or more commonly 'bottom-up', where proteins are digested to peptides prior to analysis. Changes to rRNA can be examined using either LC-MS/MS or sequencing-based approaches. The regulation of protein synthesis by specialized ribosomes can be examined by multiple methods. These include the popular 'Ribo-Seq' method for analyzing ribosome density on a given mRNA, as well as LC-MS/MS approaches incorporating pulse-labelling with stable isotopes (SILAC) to monitor protein synthesis and degradation.


Assuntos
RNA Ribossômico/química , Ribossomos/química , Cromatografia Líquida , Modelos Moleculares , Proteínas/química , Espectrometria de Massas em Tandem
13.
J Proteome Res ; 22(3): 697-705, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36735898

RESUMO

Accurate protein quantification is key to identifying protein markers, regulatory relationships between proteins, and pathophysiological mechanisms. Realizing this potential requires sensitive and deep protein analysis of a large number of samples. Toward this goal, proteomics throughput can be increased by parallelizing the analysis of both precursors and samples using multiplexed data independent acquisition (DIA) implemented by the plexDIA framework: https://plexDIA.slavovlab.net. Here we demonstrate the improved precisions of retention time estimates within plexDIA and how this enables more accurate protein quantification. plexDIA has demonstrated multiplicative gains in throughput, and these gains may be substantially amplified by improving the multiplexing reagents, data acquisition, and interpretation. We discuss future directions for advancing plexDIA, which include engineering optimized mass-tags for high-plexDIA, introducing isotopologous carriers, and developing algorithms that utilize the regular structures of plexDIA data to improve sensitivity, proteome coverage, and quantitative accuracy. These advances in plexDIA will increase the throughput of functional proteomic assays, including quantifying protein conformations, turnover dynamics, modifications states and activities. The sensitivity of these assays will extend to single-cell analysis, thus enabling functional single-cell protein analysis.


Assuntos
Algoritmos , Proteômica , Espectrometria de Massas , Proteoma/análise
14.
J Proteome Res ; 22(10): 3149-3158, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37695820

RESUMO

Mass spectrometry (MS) enables specific and accurate quantification of proteins with ever-increasing throughput and sensitivity. Maximizing this potential of MS requires optimizing data acquisition parameters and performing efficient quality control for large datasets. To facilitate these objectives for data-independent acquisition (DIA), we developed a second version of our framework for data-driven optimization of MS methods (DO-MS). The DO-MS app v2.0 (do-ms.slavovlab.net) allows one to optimize and evaluate results from both label-free and multiplexed DIA (plexDIA) and supports optimizations particularly relevant to single-cell proteomics. We demonstrate multiple use cases, including optimization of duty cycle methods, peptide separation, number of survey scans per duty cycle, and quality control of single-cell plexDIA data. DO-MS allows for interactive data display and generation of extensive reports, including publication of quality figures that can be easily shared. The source code is available at github.com/SlavovLab/DO-MS.


Assuntos
Peptídeos , Proteínas , Espectrometria de Massas/métodos , Peptídeos/análise , Proteômica/métodos , Software
15.
J Proteome Res ; 20(11): 4915-4918, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34597050

RESUMO

Current single-cell mass spectrometry (MS) methods can quantify thousands of peptides per single cell while detecting peptide-like features that may support the quantification of 10-fold more peptides. This 10-fold gain might be attained by innovations in data acquisition and interpretation even while using existing instrumentation. This perspective discusses possible directions for such innovations with the aim to stimulate community efforts for increasing the coverage and quantitative accuracy of single proteomics while simultaneously decreasing missing data. Parallel improvements in instrumentation, sample preparation, and peptide separation will afford additional gains. Together, these synergistic routes for innovation project a rapid growth in the capabilities of MS based single-cell protein analysis. These gains will directly empower applications of single-cell proteomics to biomedical research.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Peptídeos , Proteínas , Proteômica/métodos , Análise de Célula Única
16.
J Proteome Res ; 20(1): 880-887, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190502

RESUMO

The isobaric carrier approach, which combines small isobarically labeled samples with a larger isobarically labeled carrier sample, finds diverse applications in ultrasensitive mass spectrometry analysis of very small samples, such as single cells. To enhance the growing use of isobaric carriers, we characterized the trade-offs of using isobaric carriers in controlled experiments with complex human proteomes. The data indicate that isobaric carriers directly enhance peptide sequence identification without simultaneously increasing the number of protein copies sampled from small samples. The results also indicate strategies for optimizing the amount of isobaric carrier and analytical parameters, such as ion accumulation time, for different priorities such as improved quantification or an increased number of identified proteins. Balancing these trade-offs enables adapting isobaric carrier experiments to different applications, such as quantifying proteins from limited biopsies or organoids, building single-cell atlases, or modeling protein networks in single cells. In all cases, the reliability of protein quantification should be estimated and incorporated in all subsequent analyses. We expect that these guidelines will aid in explicit incorporation of the characterized trade-offs in experimental designs and transparent error propagation in data analysis.


Assuntos
Proteoma , Proteômica , Sequência de Aminoácidos , Humanos , Espectrometria de Massas , Reprodutibilidade dos Testes
18.
Mol Cell Proteomics ; 18(1): 162-168, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30282776

RESUMO

Many proteoforms-arising from alternative splicing, post-translational modifications (PTM), or paralogous genes-have distinct biological functions, such as histone PTM proteoforms. However, their quantification by existing bottom-up mass-spectrometry (MS) methods is undermined by peptide-specific biases. To avoid these biases, we developed and implemented a first-principles model (HIquant) for quantifying proteoform stoichiometries. We characterized when MS data allow inferring proteoform stoichiometries by HIquant and derived an algorithm for optimal inference. We applied this algorithm to infer proteoform stoichiometries in two experimental systems that supported rigorous bench-marking: alkylated proteoforms spiked-in at known ratios and endogenous histone 3 PTM proteoforms quantified relative to internal heavy standards. When compared with the benchmarks, the proteoform stoichiometries interfered by HIquant without using external standards had relative error of 5-15% for simple proteoforms and 20-30% for complex proteoforms. A HIquant server is implemented at: https://web.northeastern.edu/slavov/2014HIquant/.


Assuntos
Histonas/metabolismo , Proteômica/métodos , Algoritmos , Alquilação , Processamento Alternativo , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos , Software , Espectrometria de Massas em Tandem
19.
Proteomics ; 20(17-18): e2000039, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32820594

RESUMO

Increasing evidence suggests that ribosomes actively regulate protein synthesis. However, much of this evidence is indirect, leaving this layer of gene regulation largely unexplored, in part due to methodological limitations. Indeed, evidence is reviewed demonstrating that commonly used methods, such as transcriptomics, are inadequate because the variability in mRNAs coding for ribosomal proteins (RP) does not necessarily correspond to RP variability. Thus protein remodeling of ribosomes should be investigated by methods that allow direct quantification of RPs, ideally of isolated ribosomes. Such methods are reviewed, focusing on mass spectrometry and emphasizing method-specific biases and approaches to control these biases. It is argued that using multiple complementary methods can help reduce the danger of interpreting reproducible systematic biases as evidence for ribosome remodeling.


Assuntos
Ribossomos , Espectrometria de Massas , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo
20.
PLoS Comput Biol ; 15(7): e1007082, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31260443

RESUMO

Analysis by liquid chromatography and tandem mass spectrometry (LC-MS/MS) can identify and quantify thousands of proteins in microgram-level samples, such as those comprised of thousands of cells. This process, however, remains challenging for smaller samples, such as the proteomes of single mammalian cells, because reduced protein levels reduce the number of confidently sequenced peptides. To alleviate this reduction, we developed Data-driven Alignment of Retention Times for IDentification (DART-ID). DART-ID implements principled Bayesian frameworks for global retention time (RT) alignment and for incorporating RT estimates towards improved confidence estimates of peptide-spectrum-matches. When applied to bulk or to single-cell samples, DART-ID increased the number of data points by 30-50% at 1% FDR, and thus decreased missing data. Benchmarks indicate excellent quantification of peptides upgraded by DART-ID and support their utility for quantitative analysis, such as identifying cell types and cell-type specific proteins. The additional datapoints provided by DART-ID boost the statistical power and double the number of proteins identified as differentially abundant in monocytes and T-cells. DART-ID can be applied to diverse experimental designs and is freely available at http://dart-id.slavovlab.net.


Assuntos
Proteoma , Análise de Célula Única , Teorema de Bayes , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa