Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Breast Cancer Res Treat ; 172(2): 445-452, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30136009

RESUMO

PURPOSE: This observational study was designed to measure baseline energy parameters and body composition in early-stage breast cancer patients, and to follow changes during and after various modalities of treatment. This will provide information to aid in the development of individualized physical activity intervention strategies. METHODS: Patients with newly diagnosed stage 0-III breast cancer were enrolled into three cohorts: A (local therapy alone), B (endocrine therapy), or C (chemotherapy with or without endocrine therapy). At baseline, 6 months, and 12 months, subjects underwent a stationary bicycle protocol to assess power generation and DEXA to assess body composition. RESULTS: Eighty-three patients enrolled. Patients had low and variable levels of power generation at baseline (mean power per kilogram lean mass 1.55 W/kg, SD 0.88). Power normalized to lean body mass (W/kg) decreased significantly, and similarly, by 6 months in cohorts B (1.42-1.04 W/kg, p = 0.008) and C (1.53-1.18 W/kg, p < 0.001). In all cohorts, there was no recovery of power generation by 12 months. Cohort C lost lean body mass (- 1.5 kg, p = 0.007), while cohort B maintained lean body mass (- 0.2 kg, p = 0.68), despite a similar trajectory in loss of power. Seven patients developed sarcopenia during the study period, including four patients who did not receive any chemotherapy (cohort B). CONCLUSIONS: The stationary bike protocol was feasible, easy, and acceptable to patients as a way to measure energetic capacity in a clinical setting. Early-stage breast cancer patients had low and variable levels of power generation, which worsened following primary therapy and did not show evidence of 'spontaneous recovery' by 12 months. Effective physical activity interventions will need to be personalized, accounting for both baseline ability and the effect of treatment.


Assuntos
Neoplasias da Mama/terapia , Metabolismo Energético/fisiologia , Adulto , Idoso , Composição Corporal/fisiologia , Índice de Massa Corporal , Neoplasias da Mama/fisiopatologia , Estudos de Coortes , Terapia Combinada , Tratamento Farmacológico , Exercício Físico , Feminino , Terapia de Reposição Hormonal , Humanos , Pessoa de Meia-Idade , Estadiamento de Neoplasias
2.
Front Oncol ; 11: 626180, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912450

RESUMO

PURPOSE: Despite survival and quality of life benefits associated with physical activity, many breast cancer survivors remain inactive. Effective, sustainable interventions must account for individual differences in capability, motivation, and environment. Here, we evaluate the feasibility, mechanics, and efficacy of delivering an individualized, dynamic intervention to increase energetic capacity and energy expenditure. METHODS: Stage 0-III breast cancer patients who had completed primary treatment were enrolled. Prior to the intervention, detailed movement data was collected with a wearable GPS and accelerometer for 3 weeks to establish baseline activity. Movement data was collected continuously throughout the 12-week intervention, during which patients received electronically delivered, tailored, dynamic activity "prescriptions", adjusted based on demonstrated individual capability, daily movement in their environment, and progress. RESULTS: Of 66 enrolled, 57 participants began and completed the intervention. The intervention resulted in significant improvements in average steps (+558 steps/day, p = 0.01), energetic capacity measured by power generation on a stationary bicycle (1.76 to 1.99 W/kg lean mass, p < 0.01), and quality of life (FACT-B TOI, 72.8 to 74.8, p = 0.02). The greatest improvement in functional energetic capacity was seen in the lowest performing tertile at baseline (0.76 to 1.12 W/kg, p < 0.01). DISCUSSION: Wearable technology delivery of personalized activity prescriptions based on individual capability and movement behaviors demonstrates feasibility and early effectiveness. The high variability seen in baseline activity and function, as well as in response to the intervention, supports the need for future work in precision approaches to physical activity (NCT03158519).

3.
J Strength Cond Res ; 22(1): 192-5, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18296974

RESUMO

The emergence of obesity, insulin resistance, and type 2 diabetes in children requires a rational, effective public health response. Physical activity remains an important component of prevention and treatment for obesity, type 2 diabetes, and insulin resistance. Studies in adults show cardiovascular fitness to be more important than obesity in predicting insulin resistance. We recently demonstrated that a school-based fitness intervention in children who are overweight could improve cardiovascular fitness, body composition, and insulin sensitivity, but it remains unclear whether accurate assessment of fitness could be performed at the school or outside of an exercise laboratory. To determine whether new methodology using measurement of cycling power could estimate cardiovascular aerobic fitness (as defined by VO2max) in middle school children who were overweight. Thirty-five middle school children (mean age 12 +/- 0.4 years) who were overweight underwent testing on a power sensor-equipped Cycle Ops indoor cycle (Saris Cycling Group, Fitchburg, WI) as well as body composition by dual x-ray absorptiometry and VO2max by treadmill determination. Insulin sensitivity was also estimated by fasting glucose and insulin. Maximal heart rate (MHR) was determined during VO2max testing, and power produced at 80%MHR was recorded. Spearman's rank correlation was performed to evaluate associations. Mean power determined on the indoor cycle at 80% of MHR was 129 +/- 77 watts, and average power at 80% MHR divided by total body weight was 1.5 +/- 0.5. A significant correlation between watts and total body weight was seen for VO2max (P = 0.03), and significant negative correlation was seen between watts/total body weight and fasting insulin (P < 0.05). Among middle school children who were overweight, there was a significant relationship between the power component of fitness and cardiovascular aerobic fitness (measured by VO2max). This more accessible and less intimidating field-based measure of power may prove useful in predicting changes in cardiovascular fitness. Thus, accurate assessment of childhood aerobic fitness may be achievable by measurement of power, possibly within the school environment, at substantially less cost and effort than laboratory-based measurements.


Assuntos
Ciclismo/fisiologia , Teste de Esforço/métodos , Resistência Física/fisiologia , Aptidão Física/fisiologia , Índice de Massa Corporal , Criança , Estudos de Coortes , Diabetes Mellitus Tipo 2/prevenção & controle , Feminino , Frequência Cardíaca/fisiologia , Humanos , Resistência à Insulina , Masculino , Obesidade/prevenção & controle , Consumo de Oxigênio/fisiologia , Serviços de Saúde Escolar , Sensibilidade e Especificidade , Espirometria
4.
Int J Pediatr Endocrinol ; 2014(1): 25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25584047

RESUMO

BACKGROUND: Urban environments can increase risk for development of obesity, insulin resistance (IR), and type 2 diabetes mellitus (T2DM) by limiting physical activity. This study examined, in a cohort of urban Hispanic youth, the relationship between daily physical activity (PA) measured by GPS, insulin resistance and cardiovascular fitness. METHODS: Hispanic middle school children (n = 141) were assessed for body mass index (BMI), IR (homeostasis model [HOMA-IR]), cardiovascular fitness (progressive aerobic cardiovascular endurance run [PACER]). PA was measured (GPS-PA) and energy expenditure estimated (GPS-EE) utilizing a global positioning mapping device worn for up to 7 days. RESULTS: Students (mean age 12.7 ± 1.2 years, 52% female) spent 98% of waking time in sedentary activities, 1.7% in moderate intensity PA, and 0.3% in vigorous intensity. GPS analysis revealed extremely low amounts of physical movement during waking hours. The degree of low PA confounded correlation analysis with PACER or HOMA-IR. CONCLUSIONS: Levels of moderate and vigorous intensity PA, measured by GPS, were extremely low in these urban Hispanic youth, possibly contributing to high rates of obesity and IR. Physical movement patterns suggest barriers to PA in play options near home, transportation to school, and in school recess time. GPS technology can objectively and accurately evaluate initiatives designed to reduce obesity and its morbidities by increasing PA.

5.
J Strength Cond Res ; 21(3): 685-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17685725

RESUMO

The emergence of obesity, insulin resistance (IR), and type-2 diabetes (T2DM) in children requires a rational, effective public health response. Physical activity remains an important component of prevention and treatment for obesity, T2DM, and IR. Studies in adults show cardiovascular fitness (CVF) to be more important than obesity in predicting IR. We recently demonstrated that a school-based fitness intervention in children who were overweight can improve cardiovascular fitness, body composition, and insulin sensitivity, but it remains unclear whether accurate assessment of fitness could be performed at the school or outside of an exercise laboratory. The purpose of the study was to determine if a new methodology using measurement of cycling power could estimate cardiovascular aerobic fitness (as defined by maximum oxygen consumption; VO(2)max) in middle school children who were overweight. Thirty-five middle school children who were overweight (mean age 12 +/- 0.4 years) underwent testing on a power sensor- equipped Cycle Ops Indoor Cycle (IC), as well as body composition by dual x-ray absorptiometry (DXA), and VO(2)max by treadmill determination. Insulin sensitivity was also estimated by fasting glucose and insulin. Maximal heart rate (MHR) was determined during VO(2)max testing, and power produced at 80% of MHR was recorded. Spearman's rank correlation was performed to evaluate associations. Mean power determined on the IC at 80% of MHR was 129 +/- 77 watts, and average power at 80% MHR divided by total body weight (TBW) was 1.5 +/- 0.5. A significant correlation between watts/TBW was seen for VO(2)max (ml/kg/min) (p = 0.03), and significant negative correlation was seen between watts/TBW and fasting insulin (p < 0.05). In middle-school children who were overweight, there was a significant relationship between the power component of fitness and cardiovascular aerobic fitness (measured by VO(2)max). This more accessible and less intimidating field-based measure of power may prove useful in predicting changes in cardiovascular fitness. Thus, accurate assessment of childhood aerobic fitness may be achievable by measurement of power, possibly within the school environment at substantially less cost and effort than laboratory-based measurements.


Assuntos
Ciclismo/fisiologia , Sobrepeso , Aptidão Física/fisiologia , Serviços de Saúde Escolar , Absorciometria de Fóton , Glicemia/análise , Composição Corporal , Criança , Feminino , Frequência Cardíaca/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Educação Física e Treinamento , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa