Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Horm Behav ; 154: 105396, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37399780

RESUMO

Exposure of females to stressful conditions during pregnancy or oogenesis has a profound effect on the phenotype of their offspring. For example, offspring behavioural phenotype may show altered patterns in terms of the consistency of behavioural patterns and their average level of performance. Maternal stress can also affect the development of the stress axis in offspring leading to alterations in their physiological stress response. However, the majority of evidence comes from studies utilising acute stressors or exogenous glucocorticoids, and little is known about the effect of chronic maternal stress, particularly in the context of stress lasting throughout entire reproductive lifespan. To bridge this knowledge gap, we exposed female sticklebacks to stressful and unpredictable environmental conditions throughout the breeding season. We quantified the activity, sheltering and anxiety-like behaviour of offspring from three successive clutches of these females, and calculated Intra-class Correlation Coefficients for these behaviours in siblings and half-siblings. We also exposed offspring to an acute stressor and measured their peak cortisol levels. An unpredictable maternal environment had no modifying effect on inter-clutch acute stress responsivity, but resulted in diversification of offspring behaviour, indicated by an increased between-individual variability within families. This may represent a bet-hedging strategy, whereby females produce offspring differing in behavioural phenotype, to increase the chance that some of these offspring will be better at coping with the anticipated conditions.


Assuntos
Hidrocortisona , Smegmamorpha , Animais , Feminino , Vertebrados , Reprodução , Glucocorticoides , Smegmamorpha/fisiologia
2.
Proc Biol Sci ; 289(1984): 20221462, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36476008

RESUMO

Stressful environmental conditions can shape both an individual's phenotype and that of its offspring. However, little is known about transgenerational effects of chronic (as opposed to acute) stressors, nor whether these vary across the breeding lifespan of the parent. We exposed adult female (F0 generation) three-spined sticklebacks (Gasterosteus aculeatus) to chronic environmental stressors and compared their reproductive allocation with that of non-exposed controls across early, middle and late clutches produced within the single breeding season of this annual population. There was a seasonal trend (but no treatment difference) in F0 reproductive allocation, with increases in egg mass and fry size in late clutches. We then tested for transgenerational effects in the non-exposed F1 and F2 generations. Exposure of F0 females to stressors resulted in phenotypic change in their offspring and grandoffspring that were produced late in their breeding lifespan: F1 offspring produced from the late-season clutches of stressor-exposed F0 females had higher early life survival, and subsequently produced heavier eggs and F2 fry that were larger at hatching. Changed maternal allocation due to a combination of seasonal factors and environmental stressors can thus have a transgenerational effect by influencing the reproductive allocation of daughters, especially those born late in life.


Assuntos
Smegmamorpha , Estresse Fisiológico , Animais , Feminino , Masculino
3.
Environ Sci Technol ; 55(13): 8806-8816, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34167293

RESUMO

Biodiversity is declining at an alarming rate globally, with freshwater ecosystems particularly threatened. Field-based correlational studies have "ranked" stressors according to their relative effects on freshwater biota, however, supporting cause-effect data from laboratory exposures are lacking. Here, we designed exposures to elicit chronic effects over equivalent exposure ranges for three ubiquitous stressors (temperature: 22-28 °C; pollution [14 component mixture]: 0.05-50 µg/L; invasive predator cue [signal crayfish, Pacifasticus leniusculus]: 25-100% cue) and investigated effects on physiological end points in the pond snail (Lymnaeastagnalis). All stressors reduced posthatch survival at their highest exposure levels, however, highly divergent effects were observed at lower test levels. Temperature stimulated hatching, growth, and reproduction, whereas pollution delayed hatching, decreased growth, reduced egg number/embryo viability, and induced avoidance behavior. The invasive predator cue stimulated growth and reduced embryo viability. In agreement with field-based ranking of stressors, pollution was identified as having the most severe effects in our test system. We demonstrate here the utility of laboratory studies to effectively determine hierarchy of stressors according to their likelihood of causing harm in the field, which has importance for conservation. Finally, we report negative impacts on life-history traits central to population stability (survival/reproduction) at the lowest pollution level tested (0.05 µg/L).


Assuntos
Laboratórios , Lymnaea , Animais , Ecossistema , Água Doce , Caramujos
4.
J Fish Biol ; 97(3): 633-655, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32564370

RESUMO

Corals create complex reef structures that provide both habitat and food for many fish species. Because of numerous natural and anthropogenic threats, many coral reefs are currently being degraded, endangering the fish assemblages they support. Coral reef restoration, an active ecological management tool, may help reverse some of the current trends in reef degradation through the transplantation of stony corals. Although restoration techniques have been extensively reviewed in relation to coral survival, our understanding of the effects of adding live coral cover and complexity on fishes is in its infancy with a lack of scientifically validated research. This study reviews the limited data on reef restoration and fish assemblages, and complements this with the more extensive understanding of complex interactions between natural reefs and fishes and how this might inform restoration efforts. It also discusses which key fish species or functional groups may promote, facilitate or inhibit restoration efforts and, in turn, how restoration efforts can be optimised to enhance coral fish assemblages. By highlighting critical knowledge gaps in relation to fishes and restoration interactions, the study aims to stimulate research into the role of reef fishes in restoration projects. A greater understanding of the functional roles of reef fishes would also help inform whether restoration projects can return fish assemblages to their natural compositions or whether alternative species compositions develop, and over what timeframe. Although alleviation of local and global reef stressors remains a priority, reef restoration is an important tool; an increased understanding of the interactions between replanted corals and the fishes they support is critical for ensuring its success for people and nature.


Assuntos
Recifes de Corais , Ecossistema , Recuperação e Remediação Ambiental , Peixes/fisiologia , Animais , Antozoários/fisiologia , Peixes/classificação , Alimentos
5.
J Fish Biol ; 94(4): 556-577, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30838660

RESUMO

Fishes are used in a wide range of scientific studies, from conservation research with potential benefits to the species used to biomedical research with potential human benefits. Fish research can take place in both laboratories and field environments and methods used represent a continuum from non-invasive observations, handling, through to experimental manipulation. While some countries have legislation or guidance regarding the use of fish in research, many do not and there exists a diversity of scientific opinions on the sentience of fish and how we determine welfare. Nevertheless, there is a growing pressure on the scientific community to take more responsibility for the animals they work with through maximising the benefits of their research to humans or animals while minimising welfare or survival costs to their study animals. In this review, we focus primarily on the refinement of common methods used in fish research based on emerging knowledge with the aim of improving the welfare of fish used in scientific studies. We consider the use of anaesthetics and analgesics and how we mark individuals for identification purposes. We highlight the main ethical concerns facing researchers in both laboratory and field environments and identify areas that need urgent future research. We hope that this review will help inform those who wish to refine their ethical practices and stimulate thought among fish researchers for further avenues of refinement. Improved ethics and welfare of fishes will inevitably lead to increased scientific rigour and is in the best interests of both fishes and scientists.


Assuntos
Bem-Estar do Animal , Ética em Pesquisa , Peixes , Projetos de Pesquisa , Anestésicos , Animais
6.
J Exp Biol ; 220(Pt 21): 3883-3895, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093186

RESUMO

Crucian carp (Carassius carassius) survive without oxygen for several months, but it is unknown whether they are able to protect themselves from cell death normally caused by the absence, and particularly return, of oxygen. Here, we quantified cell death in brain tissue from crucian carp exposed to anoxia and re-oxygenation using the terminal deoxy-nucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and cell proliferation by immunohistochemical staining for proliferating cell nuclear antigen (PCNA) as well as PCNA mRNA expression. We also measured mRNA and protein expression of the apoptosis executer protease caspase 3, in laboratory fish exposed to anoxia and re-oxygenation and fish exposed to seasonal anoxia and re-oxygenation in their natural habitat over the year. Finally, a behavioural experiment was used to assess the ability to learn and remember how to navigate in a maze to find food, before and after exposure to anoxia and re-oxygenation. The number of TUNEL-positive cells in the telencephalon increased after 1 day of re-oxygenation following 7 days of anoxia, indicating increased cell death. However, there were no consistent changes in whole-brain expression of caspase 3 in either laboratory-exposed or naturally exposed fish, indicating that cell death might occur via caspase-independent pathways or necrosis. Re-oxygenated crucian carp appeared to have lost the memory of how to navigate in a maze (learnt prior to anoxia exposure), while the ability to learn remained intact. PCNA mRNA was elevated after re-oxygenation, indicating increased neurogenesis. We conclude that anoxia tolerance involves not only protection from damage but also repair after re-oxygenation.


Assuntos
Encéfalo/fisiologia , Carpas/fisiologia , Morte Celular , Memória , Aprendizagem Espacial , Anaerobiose , Animais , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Marcação In Situ das Extremidades Cortadas/veterinária , Masculino , Estações do Ano
7.
Environ Sci Technol ; 50(10): 5294-304, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27120978

RESUMO

The presence of synthetic glucocorticoids within the aquatic environment has been highlighted as a potential environmental concern as they may mimic the role of endogenous glucocorticoids during vertebrate ontogeny. Prednisolone is a commonly prescribed synthetic glucocorticoid which has been repeatedly detected in the environment. This study investigated the impact of environmentally relevant concentrations of prednisolone (0.1, 1, and 10 µg/L) during zebrafish embryogenesis using physiological and behavioral end points which are known to be mediated by endogenous glucocorticoids. The frequency of spontaneous muscle contractions (24 hpf) was significantly reduced by prednisolone and 0.1 µg/L increased the distance embryos swam in response to a mechanosensory stimulus (48 hpf). The percentage of embryos hatched significantly increased following prednisolone treatment (1 and 10 µg/L), while growth and mortality were unaffected. The onset of heart contraction was differentially affected by prednisolone while heart rate and oxygen consumption both increased significantly throughout embryogenesis. No substantial effect on the axial musculature was observed. Morphological changes to the lower jaw were detected at 96 hpf in response to 1 µg/L of prednisolone. Several parameters of swim behavior were also significantly affected. Environmentally relevant concentrations of prednisolone therefore alter early zebrafish ontogeny and significantly affect embryo behavior.


Assuntos
Prednisolona , Peixe-Zebra , Animais , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Glucocorticoides
8.
J Exp Biol ; 216(Pt 19): 3587-90, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23821715

RESUMO

The transfer of maternal contaminants to offspring during oogenesis and gestation is documented in many animals, and in mammals, contaminants may pass from mother to offspring during lactation. Although other non-mammalian vertebrates provide parental care in the form of nutritive secretions for offspring to feed from, the potential for toxicant transfer during non-mammalian parental care is rarely considered. The discus fish, Symphysodon spp., employs an unusual parental care strategy where fry feed on parental epidermal mucus for several weeks after hatching. This strategy has the potential to act as a method of contaminant transfer. In discus adults, both waterborne and dietary toxicants are sequestered and secreted into their epidermal mucus, the food on which fry depend. To determine whether parents could channel these contaminants directly to offspring, we exposed parents to aqueous cadmium (Cd) and recorded the subsequent feeding behaviour and Cd content of fry. Fry continued to feed normally from contaminated mucus and accumulated significant tissue concentrations of Cd. In conclusion, this parental care mechanism of the discus fish can expose offspring to harmful contaminants during the sensitive early stages of life and highlights that parent to offspring contaminant transfer after birth may be more widespread than previously thought.


Assuntos
Cádmio/metabolismo , Ciclídeos/crescimento & desenvolvimento , Exposição Ambiental/análise , Comportamento Alimentar , Poluentes Químicos da Água/metabolismo , Animais , Ciclídeos/metabolismo , Dieta , Epiderme/metabolismo , Feminino , Masculino , Muco/metabolismo
9.
J Exp Biol ; 216(Pt 24): 4590-600, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24072802

RESUMO

Oscars are often subjected to a combination of low levels of oxygen and fasting during nest-guarding on Amazonian floodplains. We questioned whether this anorexia would aggravate the osmo-respiratory compromise. We compared fed and fasted oscars (10-14 days) in both normoxia and hypoxia (10-20 Torr, 4 h). Routine oxygen consumption rates (O2) were increased by 75% in fasted fish, reflecting behavioural differences, whereas fasting improved hypoxia resistance and critical oxygen tensions (Pcrit) lowered from 54 Torr in fed fish to 34 Torr when fasting. In fed fish, hypoxia reduced liver lipid stores by approximately 50% and total liver energy content by 30%. Fasted fish had a 50% lower hepatosomatic index, resulting in lower total liver protein, glycogen and lipid energy stores under normoxia. Compared with hypoxic fed fish, hypoxic fasted fish only showed reduced liver protein levels and even gained glycogen (+50%) on a per gram basis. This confirms the hypothesis that hypoxia-tolerant fish protect their glycogen stores as much as possible as a safeguard for more prolonged hypoxic events. In general, fasted fish showed lower hydroxyacylCoA dehydrogenase activities compared with fed fish, although this effect was only significant in hypoxic fasted fish. Energy stores and activities of enzymes related to energy metabolism in muscle or gills were not affected. Branchial Na(+) uptake rates were more than two times lower in fed fish, whereas Na(+) efflux was similar. Fed and fasted fish quickly reduced Na(+) uptake and efflux during hypoxia, with fasting fish responding more rapidly. Ammonia excretion and K(+) efflux were reduced under hypoxia, indicating decreased transcellular permeability. Fasted fish had more mitochondria-rich cells (MRC), with larger crypts, indicating the increased importance of the branchial uptake route when feeding is limited. Gill MRC density and surface area were greatly reduced under hypoxia, possibly to reduce ion uptake and efflux rates. Density of mucous cells of normoxic fasted fish was approximately fourfold of that in fed fish. Overall, a 10-14 day fasting period had no negative effects on hypoxia tolerance in oscars, as fasted fish were able to respond more quickly to lower oxygen levels, and reduced branchial permeability effectively.


Assuntos
Ciclídeos/fisiologia , Privação de Alimentos , Brânquias/fisiologia , Hipóxia/metabolismo , Animais , Metabolismo Energético , Brânquias/anatomia & histologia , Transporte de Íons , Osmorregulação , Oxigênio/metabolismo , Consumo de Oxigênio , Respiração
10.
Sci Rep ; 13(1): 899, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650204

RESUMO

Gaining meaningful blood samples from water-breathing fish is a significant challenge. Two main methods typically used are grab 'n' stab and surgical cannulation. Both methods have benefits, but also significant limitations under various scenarios. Here we present a method of blood sampling laboratory fish involving gradual induction of anaesthesia within their home tank, avoiding physical struggling associated with capture, followed by rapid transfer to a gill irrigation system to maintain artificial ventilation via adequate gill water flow and then followed by sampling the caudal vasculature. This method negates many blood chemistry disturbances associated with grab 'n' stab (i.e., low pH and oxygen, elevated lactate, CO2 and stress hormones) and generates results that are directly comparable to cannulated fish under a wide range of experimentally-induced acid-base scenarios (acidosis and alkalosis). Crucially this method was successful in achieving accurate acid-base blood measurements from fish ten times smaller than are typically suitable for cannulation. This opens opportunities not previously possible for studies that relate to basic physiology, sustainable aquaculture, ecotoxicology, conservation, and climate change.


Assuntos
Coleta de Amostras Sanguíneas , Peixes , Animais , Peixes/fisiologia , Coleta de Amostras Sanguíneas/métodos , Flebotomia , Cateterismo , Água , Concentração de Íons de Hidrogênio
11.
Artigo em Inglês | MEDLINE | ID: mdl-21601646

RESUMO

Longline fishing is the most common elasmobranch capture method around the world, yet the physiological consequences of this technique are poorly understood. To quantify the sub-lethal effects of longline capture in the commonly exploited Caribbean reef shark (Carcharhinus perezi), 37 individuals were captured using standard, mid-water longlines. Hook timers provided hooking duration to the nearest minute. Once sharks were landed, blood samples were taken and used to measure a suite of physiological parameters. Control data were obtained by sampling an additional three unrestrained Caribbean reef sharks underwater at an established shark feeding site. The greatest level of physiological disruption occurred after 120-180min of hooking, whereas sharks exposed to minimal and maximal hook durations exhibited the least disturbed blood chemistry. Significant relationships were established between hooking duration and blood pH, pCO(2), lactate, glucose, plasma calcium and plasma potassium. Longline capture appears more benign than other methods assessed to date, causing a shift in the stress response from acute at the onset of capture to a sub-acute regime as the capture event progresses, apparently facilitating a degree of physiological recovery. Continued investigation into the physiological response of elasmobranchs to longline capture is vital for the effective management of such fisheries.


Assuntos
Restrição Física , Tubarões/fisiologia , Estresse Fisiológico , Animais , Região do Caribe , Tubarões/sangue , Especificidade da Espécie
12.
Animals (Basel) ; 12(19)2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36230419

RESUMO

Almost all home aquaria contain substrate, either as intentional enrichment or for aesthetic purposes. For fishes, benefits of structural enrichment have been well considered, particularly in research and aquaculture settings. However, our understanding of the impacts of tank substrate as enrichment is limited. While substrate can induce foraging in some species, a major drawback is the potential of substrate to harbour elevated levels of waste and pathogenic bacteria. Here, we considered whether substrate as a form of environmental enrichment significantly altered water quality and bacterial presence in home aquaria. Water quality (temperature, oxygen, pH, TAN, unionised ammonia, nitrate, Ca2+, Na+, Mg2+ and K+) and bacterial presence (Pseudomonas spp.) were measured over two seven-week periods in stand-alone, tropical, freshwater tanks that simulated home aquaria. The following four enrichment conditions were considered: bare tanks, plastic plants, gravel substrate or sand substrate. The addition of both gravel and sand resulted in increased pH, concentrations of total ammonia nitrogen and nitrate. Substrate was also associated with a greater Pseudomonas presence. Decreased pH alongside an increased concentration of ions were also observed depending on the time of year. In conclusion, enrichment type affected the water quality of home aquaria, with further research needed on the role of the tank biome in fish welfare.

13.
Animals (Basel) ; 11(8)2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34438806

RESUMO

To reduce the spread of COVID-19, countries worldwide placed limitations on social interaction, which is anticipated to have severe psychological consequences. Although findings are inconsistent, prior research has suggested that companion animals may positively influence human well-being and reduce loneliness. In the context of COVID-19, this has important implications, as companion animal guardians may be less negatively affected by the pandemic. The primary aim of this research was to investigate the influence of companion animals on mental well-being and loneliness during the pandemic, with specific interest in the role of ornamental fishes. A mixed-methods study was conducted, using an international sample. Quantitative data were collected via an online survey (n = 1199) and analysed using robust hierarchical multiple regression analyses; the influence of level of engagement with companion animals was examined for dogs, cats and ornamental fishes. There was no evidence that companion animal guardianship was associated with loneliness and mental well-being during the pandemic but spending more time engaging physically or socially with dogs (and to a lesser extent cats) was generally associated with poorer outcomes. Qualitative data were collected through open-ended survey responses (n = 757) and semi-structured interviews (n = 25) and analysed using reflexive thematic analysis. Two themes were developed-one related to companion animals as providers of social and emotional support, and the other to companion animals as providers of purpose and perspective. Concerns regarding the impact of the pandemic on animal welfare were also identified. Compared to other animal types, more participants expressed indifference regarding the impact of their fishes on their well-being during the pandemic, possibly because fishes cannot provide comfort via physical touch. The findings of this study reflect the wider field of human-animal interaction; although qualitative data suggest guardians believe their companion animals are a positive influence in their lives, there is little convincing quantitative data to support these beliefs. This highlights the need to refine theories regarding which aspects of companion animal guardianship may influence human well-being; the findings from this research may be useful in the refinement of such theories.

14.
J Exp Zool B Mol Dev Evol ; 314(3): 187-95, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19911422

RESUMO

Due to their large yolk size, salmonid embryos take a longer time for epiboly movements and germ ring closure compared with most other teleost species. Here we analyzed the germ ring closure, tail bud formation and development of the notochord and somites in rainbow trout using live embryo imaging and in situ hybridization with the rt-ntl probe. Rt-ntl is expressed in the germ ring (blastula, gastrula and somitogenesis stage), notochord, tail bud and somites (somitogenesis stage). When epiboly covers half the yolk, a tail bud-like structure is formed and somitogenesis starts. By the time epiboly is completed, the yolk covered and the germ ring closed, the embryo has already reached the 20 somite stage. Therefore, the timing of germ ring closure and tail bud formation is reversed in trout embryos compared with zebrafish and other small model fish embryos (heterochrony). Based on this result, we re-examined the definition of tail bud formation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Oncorhynchus mykiss/embriologia , Cauda/embriologia , Animais , Organogênese , Somitos/embriologia
15.
Horm Behav ; 58(3): 433-9, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20546742

RESUMO

Even before fertilisation, exposure of ova to high levels of stress corticosteroids can have significant effects on offspring in a variety of animals. In fish, high levels of cortisol in ovarian fluid can elicit morphological changes and reduce offspring survival. Whether there are other more subtle effects, including behavioural effects, of exposure to cortisol pre-fertilisation in fish is unclear. Here I demonstrate that a brief (3h) exposure of brown trout eggs to a physiologically relevant ( approximately 500 microg l(-)(1)) concentration of cortisol pre-fertilisation resulted in changes to developing offspring. Embryos exposed to cortisol pre-fertilisation displayed elevated oxygen consumption and ammonia excretion rates during development. After hatch, in contrast to the effects of cortisol exposure in juvenile fish, fish exposed to cortisol as eggs were more aggressive than control individuals and responded differently within a maze system. Thus, a transient exposure to corticosteroids in unfertilised eggs results in both physiological and behavioural alterations in fish.


Assuntos
Agressão/efeitos dos fármacos , Hidrocortisona/farmacologia , Óvulo/efeitos dos fármacos , Truta/fisiologia , Amônia/metabolismo , Animais , Feminino , Fertilização , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos
16.
J Exp Biol ; 213(Pt 22): 3787-95, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21037057

RESUMO

Vertebrates display a wide variety of parental care behaviours, including the guarding of offspring pre and post nutritional independence as well as the direct provision of nutrients during the early development period. The Amazonian cichlid Symphysodon spp. (discus fish) is unusual among fish species, in that both parents provide offspring with mucus secretions to feed from after hatching. This extensive provision of care, which can last up to a month, imposes a physiological demand on both parents and gives rise to conflict between the parent and offspring. Here, we investigated the relationship between parents and offspring during a breeding cycle, determining both mucus composition (total protein, cortisol, immunoglobulin, and Na(+), K(+) and Ca(2+) concentrations) and the behavioural dynamics of the parent-offspring relationship. Over the course of a breeding cycle, a significant increase in offspring bite rate was recorded, with a concomitant increase in the frequency of turns the male and female parent took at caring for their young. A peak in mucus antibody provision was seen as offspring reached the free-swimming stage, suggesting a role analogous to colostrum provision in mammals. Mucus protein content was lowest during the second and third weeks of free swimming, and a weaning period, similar to that seen in mammalian parental care, occurred when the offspring had been free swimming for ∼3 weeks. In many ways, the parental behaviour of discus fish is more similar to mammalian and avian parental care than other fish species, and represents an exciting aquatic model for studying the parent-offspring conflict.


Assuntos
Ciclídeos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Comportamento Animal/fisiologia , Ciclídeos/imunologia , Comportamento Alimentar/fisiologia , Feminino , Hidrocortisona/metabolismo , Imunoglobulina M/metabolismo , Íons/metabolismo , Masculino , Comportamento Materno/fisiologia , Mucoproteínas/metabolismo , Muco/imunologia , Muco/fisiologia , Comportamento Paterno/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-31461881

RESUMO

Although fish and other aquatic species are popular privately-kept pets, little is known about the effects of watching live fish on the perceptions of arousal and the link between those perceptions and physiological measures of arousal. In two separate experiments, participants were asked to watch identically-equipped fish tanks for five minutes in each of three conditions: (1) Live fish, (2) plants and water, and (3) empty tank. Linear mixed models used across both experiments revealed similar results: Greater perceptions of relaxation and mood, and less anxiety during or after viewing the live fish condition, compared with the other conditions. Heart rate and heart rate variability responded to the arousal associated with a math task, but did not differ consistently across viewing conditions. These results suggest that the link between perceptions of arousal, and the physiological measures associated with arousal, may not be strong or immediate, or that heart rate and heart rate variability may not be appropriate measures for the test population. Implications of these results for the biophilia hypothesis and the biopsychosocial model are discussed.


Assuntos
Afeto/fisiologia , Ansiedade/psicologia , Peixes/fisiologia , Frequência Cardíaca/fisiologia , Terapia de Relaxamento/métodos , Adolescente , Adulto , Animais , Ansiedade/fisiopatologia , Transtornos de Ansiedade/prevenção & controle , Nível de Alerta , Feminino , Humanos , Masculino
18.
PLoS One ; 14(7): e0220524, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31356652

RESUMO

BACKGROUND: Most research into the health benefits of human-animal interaction has focused on species that interact physically with humans, such as dogs. This may be unsuitable for certain populations for reasons including accessibility and the risk of negative consequences to both the person and the animal. However, some research has associated viewing fish in aquariums with positive well-being outcomes; as there is no physical contact with the animal, this form of interaction carries less risk. At present, little is known about the specific benefits of human-fish interaction. OBJECTIVES: To explore current evidence relating to the psychological and physiological benefits of interacting with fish in aquariums. METHODS: Systematic searches were conducted to identify relevant primary research of any design. All forms of interaction were considered, including keeping fish as companion animals and fish aquarium-based interventions. "Non-live" alternatives, such as videos, were also considered. This review was conducted according to a registered protocol (PROSPERO ID: CRD42018090466). RESULTS: Nineteen studies were included. Two provided tentative evidence that keeping home aquaria is associated with relaxation. The remaining studies involved novel interactions with fish in home or public aquariums. Outcomes relating to anxiety, relaxation and/or physiological stress were commonly assessed; evidence was mixed with both positive and null findings. Preliminary support was found for effects on mood, pain, nutritional intake and body weight, but not loneliness. All studies had methodological issues and risk of bias was either high or unclear. CONCLUSIONS: Review findings suggest that interacting with fish in aquariums has the potential to benefit human well-being, although research on this topic is currently limited. Future research should aim to address gaps in the evidence, such as whether and how the type of human-fish interaction can influence well-being outcomes. Researchers should also aim to address the methodological concerns highlighted in this review.


Assuntos
Terapia Assistida com Animais/métodos , Vínculo Humano-Animal , Qualidade de Vida , Determinantes Sociais da Saúde/estatística & dados numéricos , Animais , Peixes , Nível de Saúde , Humanos
19.
Respir Physiol Neurobiol ; 162(2): 109-16, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18555751

RESUMO

This study determined the respiratory responses to progressive hypoxia in oscar, an extremely hypoxia-tolerant Amazonian cichlid. Oscar depressed oxygen consumption rates (MO2), beginning at a critical O2 tension (Pcrit) of 46Torr, to only 14% of normoxic rates at 10Torr. Total ventilation (Vw) increased up to 4-fold, entirely due to a rise in ventilatory stroke volume (no change in ventilatory frequency), and water convection requirement (Vw/MO2) increased substantially (up to 15-fold). Gill O2 extraction fell steadily, from 60% down to 40%. Although O2 transfer factor (an index of gill O2 diffusion capacity) increased transiently in moderate hypoxia, it decreased at 10Torr, which may have caused the increased expired-arterial PO2 difference. Venous PO2 was always very low (< or =7Torr). Anaerobic metabolism made a significant contribution to ATP supply, indicated by a 3-fold increase in plasma lactate that resulted in an uncompensated metabolic acidosis. Respiration of isolated gill cells was not inhibited until below 5Torr; because gill water PO2 always exceeded this value, hypoxic ion flux arrest in oscars [Wood et al., Am. J. Physiol. Reg. Integr. Comp. Physiol. 292, R2048-R2058, 2007] is probably not caused by O2 limitation in ionocytes. We conclude that metabolic depression and tolerance of anaerobic bi-products, rather than a superior capacity for O2 supply, allow oscar to thrive in extreme hypoxia in the Amazon.


Assuntos
Limiar Anaeróbio/fisiologia , Ciclídeos/fisiologia , Hipóxia/metabolismo , Consumo de Oxigênio/fisiologia , Mecânica Respiratória/fisiologia , Adaptação Fisiológica , Animais , Respiração Celular/fisiologia , Metabolismo Energético/fisiologia , Brânquias/citologia , Brânquias/fisiologia , Ácido Láctico/sangue
20.
Artigo em Inglês | MEDLINE | ID: mdl-18276177

RESUMO

Animals living in the intertidal zone experience regular, predictable fluctuations in physical parameters including temperature, oxygen and salinity and rely on behavioural, physiological and biochemical mechanisms to cope with environmental variation. In the present study, behavioural strategies induced by aquatic hypoxia (e.g. emergence) were performed at similar oxygen tensions across laboratory, mesocosm and field environments; the number of individuals performing these behaviours at any one time was similar in mesocosms and the field. The use of aquatic surface respiration (ASR) was more plastic than emergence behaviour, occurring at a lower oxygen tension in juveniles than adults and being influenced by the addition of alarm substance. Oxygen uptake was lower in air than in water in adults but, in contrast, oxygen uptake was not influenced by the respiratory medium in juveniles. In the laboratory, 72 h of forced emergence did not affect whole body concentrations of lactate but when ASR and emergence were prevented within mesocosm environments there was a significant elevation of lactate. The present study highlights the benefits of transcending traditional laboratory/field boundaries allowing the responses of laboratory-held animals to environmental fluctuation to be integrated with how these animals perform in their natural environment.


Assuntos
Ecossistema , Planejamento Ambiental , Peixes/fisiologia , Oxigênio/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Hipóxia Celular/fisiologia , Glucose/análise , Glicogênio/análise , Abrigo para Animais , Ácido Láctico/análise , Modelos Animais , Músculos/química , Consumo de Oxigênio/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa