RESUMO
Cell-free protein synthesis (CFPS) is a powerful platform for synthetic biology, allowing for the controlled expression of proteins without reliance on living cells. However, the process of producing the cell extract, a key component of cell-free reactions, can be a bottleneck for new users to adopt CFPS as it requires technical knowledge and significant researcher oversight. Here, we provide a detailed method for implementing a simplified cell extract preparation workflow using CFAI media. We also provide a detailed protocol for the alternative, 2x YPTG media-based preparation process, as it represents a useful benchmark within the cell-free community.
Assuntos
Escherichia coli , Biossíntese de Proteínas , Sistema Livre de Células/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Biologia Sintética/métodosRESUMO
Cell-free protein synthesis (CFPS) has grown as a biotechnology platform that captures transcription and translation machinery in vitro. Numerous developments have made the CFPS platform more accessible to new users and have expanded the range of applications. For lysate based CFPS systems, cell extracts can be generated from a variety of organisms, harnessing the unique biochemistry of that host to augment protein synthesis. Within the last 20 years, Escherichia coli (E. coli) has become one of the most widely used organisms for supporting CFPS due to its affordability and versatility. Despite numerous key advances, the workflow for E. coli cell extract preparation has remained a key bottleneck for new users to implement CFPS for their applications. The extract preparation workflow is time-intensive and requires technical expertise to achieve reproducible results. To overcome these barriers, we previously reported the development of a 24 hour cell-free autoinduction (CFAI) workflow that reduces user input and technical expertise required. The CFAI workflow minimizes the labor and technical skill required to generate cell extracts while also increasing the total quantities of cell extracts obtained. Here we describe that workflow in a step-by-step manner to improve access and support the broad implementation of E. coli based CFPS.