Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 21(21): 9052-9060, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34724612

RESUMO

We investigate transient nanotextured heterogeneity in vanadium dioxide (VO2) thin films during a light-induced insulator-to-metal transition (IMT). Time-resolved scanning near-field optical microscopy (Tr-SNOM) is used to study VO2 across a wide parameter space of infrared frequencies, picosecond time scales, and elevated steady-state temperatures with nanoscale spatial resolution. Room temperature, steady-state, phonon enhanced nano-optical contrast reveals preexisting "hidden" disorder. The observed contrast is associated with inequivalent twin domain structures. Upon thermal or optical initiation of the IMT, coexisting metallic and insulating regions are observed. Correlations between the transient and steady-state nano-optical textures reveal that heterogeneous nucleation is partially anchored to twin domain interfaces and grain boundaries. Ultrafast nanoscopic dynamics enable quantification of the growth rate and bound the nucleation rate. Finally, we deterministically anchor photoinduced nucleation to predefined nanoscopic regions by locally enhancing the electric field of pump radiation using nanoantennas and monitor the on-demand emergent metallicity in space and time.

2.
Sci Rep ; 7(1): 16038, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167488

RESUMO

The characteristic of strongly correlated materials is the Mott transition between metal and insulator (MIT or IMT) in the same crystalline structure, indicating the presence of a gap formed by the Coulomb interaction between carriers. The physics of the transition needs to be revealed. Using VO2, as a model material, we observe the emergence of a metallic chain in the intermediate insulating monoclinic structure (M2 phase) of epitaxial strained films, proving the Mott transition involving the breakdown of the critical Coulomb interaction. It is revealed by measuring the temperature dynamics of coherent optical phonons with separated vibrational modes originated from two substructures in M2: one is the charge-density-wave, formed by electron-phonon (e-ph) interaction, and the other is the equally spaced insulator-chain with electron-electron (e-e) correlations.

3.
J Phys Condens Matter ; 28(8): 085602, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26829104

RESUMO

In order to elucidate a mechanism of the insulator-to-metal transition (IMT) for a Mott insulator VO2 (3d(1)), we present Schottky nanojunctions and the structural phase transition (SPT) by simultaneous nanolevel measurements of photocurrent and Raman scattering in microlevel devices. The Schottky nanojunction with the monoclinic metallic phase between the monoclinic insulating phases is formed by the photoheat-induced IMT not accompanied with the SPT. The temperature dependence of the Schottky junction reveals that the Mott insulator has an electronic structure of an indirect subband between the main Hubbard d bands. The IMT as reverse process of the Mott transition occurs by temperature-induced excitation of bound charges in the indirect semiconductor band, most likely formed by impurities such as oxygen deficiency. The metal band (3d(1)) for the Mott insulator is screened (trapped) by the indirect band (impurities).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa