Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 58(5): 840-852, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28159869

RESUMO

Plasma apoC-III levels correlate with triglyceride (TG) levels and are a strong predictor of CVD outcomes. ApoC-III elevates TG in part by inhibiting LPL. ApoC-III likely inhibits LPL by competing for lipid binding. To probe this, we used oil-drop tensiometry to characterize binding of six apoC-III variants to lipid/water interfaces. This technique monitors the dependence of lipid binding on surface pressure, which increases during TG hydrolysis by LPL. ApoC-III adsorption increased surface pressure by upward of 18 mN/m at phospholipid/TG/water interfaces. ApoC-III was retained to high pressures at these interfaces, desorbing at 21-25 mN/m. Point mutants, which substituted alanine for aromatic residues, impaired the lipid binding of apoC-III. Adsorption and retention pressures decreased by 1-6 mN/m in point mutants, with the magnitude determined by the location of alanine substitutions. Trp42 was most critical to mediating lipid binding. These results strongly correlate with our previous results, linking apoC-III point mutants to increased LPL binding and activity at lipid surfaces. We propose that aromatic residues in the C-terminal half of apoC-III mediate binding to TG-rich lipoproteins. Increased apoC-III expression in the hypertriglyceridemic state allows apoC-III to accumulate on lipoproteins and inhibit LPL by preventing binding and/or access to substrate.


Assuntos
Apolipoproteína C-II/química , Apolipoproteína C-II/metabolismo , Metabolismo dos Lipídeos , Lipase Lipoproteica/antagonistas & inibidores , Adsorção , Sequência de Aminoácidos , Apolipoproteína C-II/genética , Humanos , Mutação , Relação Estrutura-Atividade , Triglicerídeos/metabolismo
2.
J Biol Chem ; 290(29): 18029-18044, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26026161

RESUMO

Apolipoprotein C-II (apoC-II) is the co-factor for lipoprotein lipase (LPL) at the surface of triacylglycerol-rich lipoproteins. LPL hydrolyzes triacylglycerol, which increases local surface pressure as surface area decreases and amphipathic products transiently accumulate at the lipoprotein surface. To understand how apoC-II adapts to these pressure changes, we characterized the behavior of apoC-II at multiple lipid/water interfaces. ApoC-II adsorption to a triacylglycerol/water interface resulted in large increases in surface pressure. ApoC-II was exchangeable at this interface and desorbed on interfacial compressions. These compressions increase surface pressure and mimic the action of LPL. Analysis of gradual compressions showed that apoC-II undergoes a two-step desorption, which indicates that lipid-bound apoC-II can exhibit at least two conformations. We characterized apoC-II at phospholipid/triacylglycerol/water interfaces, which more closely mimic lipoprotein surfaces. ApoC-II had a large exclusion pressure, similar to that of apoC-I and apoC-III. However, apoC-II desorbed at retention pressures higher than those seen with the other apoCs. This suggests that it is unlikely that apoC-I and apoC-III inhibit LPL via displacement of apoC-II from the lipoprotein surface. Upon rapid compressions and re-expansions, re-adsorption of apoC-II increased pressure by lower amounts than its initial adsorption. This indicates that apoC-II removed phospholipid from the interface upon desorption. These results suggest that apoC-II regulates the activity of LPL in a pressure-dependent manner. ApoC-II is provided as a component of triacylglycerol-rich lipoproteins and is the co-factor for LPL as pressure increases. Above its retention pressure, apoC-II desorbs and removes phospholipid. This triggers release of LPL from lipoproteins.


Assuntos
Apolipoproteína C-II/metabolismo , Lipase Lipoproteica/metabolismo , Adsorção , Sequência de Aminoácidos , Apolipoproteína C-II/química , Humanos , Metabolismo dos Lipídeos , Dados de Sequência Molecular , Fosfolipídeos/metabolismo , Pressão , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Propriedades de Superfície , Água/metabolismo
3.
J Biol Chem ; 289(13): 9000-12, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24515109

RESUMO

Apolipoprotein B (apoB) is the principal protein component of triacylglyceride (TAG)-rich lipoproteins, including chylomicrons and very low density lipoprotein, which is the precursor to LDL (the "bad cholesterol"). TAG-rich lipoprotein assembly is initiated by the N-terminal ßα1 superdomain of apoB, which co-translationally binds and remodels the luminal leaflet of the rough endoplasmic reticulum. The ßα1 superdomain contains four domains and is predicted to interact directly with lipids. Using drop tensiometry, we examined the interfacial properties of the α-helical and C-sheet domains and several subdomains to establish a detailed structure-function relationship at the lipid/water interface. The adsorption, stress response, exchangeability, and pressure (Π)-area relationship were studied at both triolein/water and triolein/1-palmitoyl, 2-oleoylphosphatidylcholine/water interfaces that mimic physiological environments. The α-helical domain spontaneously adsorbed to a triolein/water interface and formed a viscoelastic surface. It was anchored to the surface by helix 6, and the other helices were ejected and/or remodeled on the surface as a function of surface pressure. The C-sheet instead formed an elastic film on a triolein/water interface and was irreversibly anchored to the lipid surface, which is consistent with the behavior of amphipathic ß-strands. When both domains were adsorbed together on the surface, the C-sheet shielded a portion of the α-helical domain from the surface, which retained its globular structure. Overall, the unique secondary and tertiary structures of the N-terminal domains of apoB support the intrinsic capability of co-translational lipid recruitment. The evidence presented here allows the construction of a detailed model of the initiation of TAG-rich lipoprotein assembly.


Assuntos
Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Triglicerídeos/metabolismo , Sequência de Aminoácidos , Apolipoproteínas B/biossíntese , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosfatidilcolinas/metabolismo , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície , Trioleína/metabolismo , Água/metabolismo
4.
J Lipid Res ; 55(3): 478-92, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24308948

RESUMO

Apolipoprotein A-I (apoA-I) has a great conformational flexibility to exist in lipid-free, lipid-poor, and lipid-bound states during lipid metabolism. To address the lipid binding and the dynamic desorption behavior of apoA-I at lipoprotein surfaces, apoA-I, Δ(185-243)apoA-I, and Δ(1-59)(185-243)apoA-I were studied at triolein/water and phosphatidylcholine/triolein/water interfaces with special attention to surface pressure. All three proteins are surface active to both interfaces lowering the interfacial tension and thus increasing the surface pressure to modify the interfaces. Δ(185-243)apoA-I adsorbs much more slowly and lowers the interfacial tension less than full-length apoA-I, confirming that the C-terminal domain (residues 185-243) initiates the lipid binding. Δ(1-59)(185-243)apoA-I binds more rapidly and lowers the interfacial tension more than Δ(185-243)apoA-I, suggesting that destabilizing the N-terminal α-helical bundle (residues 1-185) restores lipid binding. The three proteins desorb from both interfaces at different surface pressures revealing that different domains of apoA-I possess different lipid affinity. Δ(1-59)(185-243)apoA-I desorbs at lower pressures compared with apoA-I and Δ(185-243)apoA-I indicating that it is missing a strong lipid association motif. We propose that during lipoprotein remodeling, surface pressure mediates the adsorption and partial or full desorption of apoA-I allowing it to exchange among different lipoproteins and adopt various conformations to facilitate its multiple functions.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/genética , Lipoproteínas/química , Mutação , Adsorção , Apolipoproteína A-I/metabolismo , Sítios de Ligação , Humanos , Cinética , Lipoproteínas/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Propriedades de Superfície , Termodinâmica , Trioleína/química , Trioleína/metabolismo , Água/química , Água/metabolismo
5.
J Lipid Res ; 54(6): 1578-1588, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23528259

RESUMO

Amphipathic α-helices (AαH) are the primary structural motif of exchangeable apolipoproteins. AαHs in exchangeable apolipoproteins adsorb, remodel, and desorb at the surface of plasma lipoproteins in response to changes in their size or composition. A triolein/water (TO/W) interface was used as a model surface to study adsorption and desorption of AαHs at a lipoprotein-like interface. We previously reported that AαH peptides spontaneously adsorb to a TO/W interface, but they only partially desorb from the surface when the excess peptide was removed from the system. This finding suggests that "exchangeable" apolipoproteins are in fact partially exchangeable and only desorb from a surface in response to compression or change in composition. Here, we develop a thermodynamic and kinetic model to describe this phenomenon based on the change in the interfacial pressure (Π) of the C-terminal 46 amino acids of apolipoprotein A-I (C46) at a TO/W interface. This model suggests that apolipoproteins have at least two interfacial conformations that are in a surface concentration and Π-dependent equilibrium. This two-state surface equilibrium model, which is based on experimental data and is consistent with dynamic changes in Π(t), provides insights into the selective metabolism and clearance of plasma lipoproteins and the process of lipoprotein remodeling.


Assuntos
Apolipoproteína A-I/química , Modelos Moleculares , Pressão , Humanos , Estrutura Secundária de Proteína
6.
J Lipid Res ; 54(7): 1927-38, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23670531

RESUMO

Amphipathic α-helices mediate binding of exchangeable apolipoproteins to lipoproteins. To probe the role of α-helical structure in protein-lipid interactions, we used oil-drop tensiometry to characterize the interfacial behavior of apolipoprotein C-I (apoC-I) variants at triolein/water (TO/W) and 1-palmitoyl-2-oleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. ApoC-I, the smallest apolipoprotein, has two amphipathic α-helices. Mutants had single Pro or Ala substitutions that resulted in large differences in helical content in solution and on phospholipids. The ability of apoC-I to bind TO/W and POPC/TO/W interfaces correlated strongly with α-helical propensity. On binding these interfaces, peptides with higher helical propensity increased surface pressure to a greater extent. Likewise, peptide exclusion pressure at POPC/TO/W interfaces increased with greater helical propensity. ApoC-I retention on TO/W and POPC/TO/W interfaces correlated strongly with phospholipid-bound helical content. On compression of these interfaces, peptides with higher helical content were ejected at higher pressures. Substitution of Arg for Pro in the N-terminal α-helix altered net charge and reduced apoC-I affinity for POPC/TO/W interfaces. Our results suggest that peptide-lipid interactions drive α-helix binding to and retention on lipoproteins. Point mutations in small apolipoproteins could significantly change α-helical propensity or charge, thereby disrupting protein-lipid interactions and preventing the proteins from regulating lipoprotein catabolism at high surface pressures.


Assuntos
Apolipoproteína C-I/química , Fosfatidilcolinas/química , Trioleína/química , Água/química , Apolipoproteína C-I/genética , Humanos , Mutação Puntual , Estrutura Secundária de Proteína , Propriedades de Superfície
7.
Biochemistry ; 51(6): 1238-48, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22264166

RESUMO

Apolipoprotein C-I (apoC-I) is an important constituent of high-density lipoprotein (HDL) and is involved in the accumulation of cholesterol ester in nascent HDL via inhibition of cholesterol ester transfer protein and potential activation of lecithin:cholesterol acyltransferase (LCAT). As the smallest exchangeable apolipoprotein (57 residues), apoC-I transfers between lipoproteins via a lipid-binding motif of two amphipathic α-helices (AαHs), spanning residues 7-29 and 38-52. To understand apoC-I's behavior at hydrophobic lipoprotein surfaces, oil drop tensiometry was used to compare the binding to triolein/water (TO/W) and palmitoyloleoylphosphatidylcholine/triolein/water (POPC/TO/W) interfaces. When apoC-I binds to either interface, the surface tension (γ) decreases by ~16-18 mN/m. ApoC-I can be exchanged at both interfaces, desorbing upon compression and readsorbing on expansion. The maximal surface pressures at which apoC-I begins to desorb (Π(max)) were 16.8 and 20.7 mN/m at TO/W and POPC/TO/W interfaces, respectively. This suggests that apoC-I interacts with POPC to increase its affinity for the interface. ApoC-I is more elastic on POPC/TO/W than TO/W interfaces, marked by higher values of the elasticity modulus (ε) on oscillations. At POPC/TO/W interfaces containing an increasing POPC:TO ratio, the pressure at which apoC-I begins to be ejected increases as the phospholipid surface concentration increases. The observed increase in apoC-I interface affinity due to higher degrees of apoC-I-POPC interactions may explain how apoC-I can displace larger apolipoproteins, such as apoE, from lipoproteins. These interactions allow apoC-I to remain bound to the interface at higher Π values, offering insight into apoC-I's rearrangement on triacylglycerol-rich lipoproteins as they undergo Π changes during lipoprotein maturation by plasma factors such as lipoprotein lipase.


Assuntos
Apolipoproteína C-I/química , Proteínas de Transferência de Ésteres de Colesterol/antagonistas & inibidores , Lipoproteínas/antagonistas & inibidores , Modelos Moleculares , Fosfolipídeos/química , Triglicerídeos/antagonistas & inibidores , Trioleína/química , Água/química , Apolipoproteína C-I/metabolismo , Apolipoproteínas E/metabolismo , Proteínas de Transferência de Ésteres de Colesterol/química , Interações Medicamentosas/fisiologia , Humanos , Lipoproteínas/química , Fosfolipídeos/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Estrutura Secundária de Proteína/fisiologia , Propriedades de Superfície , Triglicerídeos/química , Trioleína/metabolismo , Água/metabolismo
8.
Biophys J ; 101(2): 353-61, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21767487

RESUMO

Apolipoprotein A-I (ApoA-I) is the principle protein component of HDL, also known as "good cholesterol," which is an inverse marker for cardiovascular disease. The N-terminal 44 amino acids of ApoA-I (N44) are predicted to be responsible for stabilization of soluble ApoA-I, whereas the C-terminal 46 amino acids (C46) are predicted to initiate lipid binding and oligomerization. In this work, we apply what we believe to be a novel application of drop tensiometry to study the adsorption and desorption of N44 and C46 at a triolein/POPC/water (TO/POPC/W) interface. The amount of peptide that adsorbed to the surface was dependent on the surface concentration of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and pressure (Π) before adsorption. At a TO/POPC/W interface, the exclusion pressure (Π(EX)) of C46 was 25.8 mN/m, and was 19.3 mN/m for N44. Once adsorbed, both peptides formed a homogeneous surface with POPC but were progressively ejected from the surface by compression. During a compression, C46 removed POPC from the surface whereas N44 did not. Repeated compressions caused C46 to deplete entirely the surface of phospholipid. If full-length ApoA-I could also remove phospholipid, this could provide a mechanism for the transfer of surface components of chylomicrons and very low density lipoprotein to high density lipoprotein with the assistance of phospholipid transfer protein.


Assuntos
Apolipoproteína A-I/química , Apolipoproteína A-I/metabolismo , Lipoproteínas de Alta Densidade Pré-beta/metabolismo , Fosfatidilcolinas/química , Fosfolipídeos/isolamento & purificação , Trioleína/química , Água/química , Adsorção , Modelos Moleculares , Peptídeos/metabolismo , Relação Estrutura-Atividade , Temperatura
9.
Biochemistry ; 49(18): 3898-907, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20353182

RESUMO

The N-terminal sequence of apolipoprotein B (apoB) is critical in triacylglycerol-rich lipoprotein assembly. The first 17% of apoB (B17) is thought to consist of three domains: B5.9, a beta-barrel, B6.4-13, a series of 17 alpha-helices, and B13-17, a putative beta-sheet. B5.9 does not bind to lipid, while B6.4-13 and B13-17 contain hydrophobic interfaces that can interact with lipids. To understand how B6.4-13 and B13-17 might interact with triacylglycerol during lipoprotein assembly, the interfacial properties of both peptides were studied at the triolein/water interface. Both B6.4-13 and B13-17 are surface active. Once bound, the peptides can be neither exchanged nor pushed off the interface. Some residues of the peptides can be ejected from the interface upon compression but readsorb on expansion. B13-17 binds to the interface more strongly. The maximum pressure the peptide can withstand without being partially ejected (Pi(max)) is 19.2 mN/m for B13-17 compared to 16.7 mN/m for B6.4-13. B13-17 is purely elastic at the interface, while B6.4-13 forms a viscous-elastic film. When they are spread at an air/water interface, the limiting area and the collapse pressures are 16.6 A(2)/amino acid and 31 mN/m for B6.4-13 and 17.8 A(2)/amino acid and 35 mN/m for B13-17, respectively. The alpha-helical B6.4-13 contains some hydrophobic helices that stay bound and prevent the peptide from leaving the surface. The beta-sheets of B13-17 bind irreversibly to the surface. We suggest that during lipoprotein assembly, the N-terminal apoB starts recruiting lipid as early as B6.4, but additional sequences are essential for formation of a lipid pocket that can stabilize lipoprotein emulsion particles for secretion.


Assuntos
Apolipoproteínas B/química , Proteínas do Ovo/química , Animais , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Sítios de Ligação , Galinhas , Proteínas do Ovo/genética , Humanos , Cinética , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Triglicerídeos/química
10.
J Lipid Res ; 50(7): 1340-52, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19251580

RESUMO

Apolipoprotein B (apoB) is a nonexchangeable apolipoprotein. During lipoprotein assembly, it recruits phospholipids and triacylglycerols (TAG) into TAG-rich lipoprotein particles. It remains bound to secreted lipoproteins during lipid metabolism in plasma. The beta1 region (residues 827-1880) of apoB has a high amphipathic beta strand (AbetaS) content and is proposed to be one region anchoring apoB to lipoproteins. The AbetaS-rich region between apoB37 and apoB41 (residues 1694-1880) was cloned, expressed, and purified. The interfacial properties were studied at the triolein/water (TO/W) and air/water (A/W) interfaces. ApoB[37-41] is surface-active and adsorbs to the TO/W interface. After adsorption the unbound apoB[37-41] was removed from the aqueous phase. Adsorbed apoB[37-41] did not desorb and could not be forced off by increasing the surface pressure up to 23 mN/m. ApoB[37-41] adsorbed on the TO/W interface was completely elastic when compressed and expanded by +/-13% of its area. On an A/W interface, the apoB[37-41] monolayer became solid when compressed to 4 mN/m pressure indicating extended beta-sheet formation. It could be reversibly compressed and expanded between low pressure and its collapse pressure (35 mN/m). Our studies confirm that the AbetaS structure of apoB[37-41] is a lipid-binding motif that can irreversibly anchor apoB to lipoproteins.


Assuntos
Sequência de Aminoácidos , Apolipoproteínas B/química , Apolipoproteínas B/metabolismo , Adsorção , Apolipoproteínas B/genética , Sequência de Bases , Elasticidade , Lipídeos/química , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Propriedades de Superfície , Triglicerídeos/metabolismo , Trioleína/química , Água/química
11.
Mol Biol Cell ; 30(5): 703-716, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649995

RESUMO

Lipid droplets (LDs) in all eukaryotic cells are coated with at least one of the perilipin (Plin) family of proteins. They all regulate key intracellular lipases but do so to significantly different extents. Where more than one Plin is expressed in a cell, they associate with LDs in a hierarchical manner. In vivo, this means that lipid flux control in a particular cell or tissue type is heavily influenced by the specific Plins present on its LDs. Despite their early discovery, exactly how Plins target LDs and why they displace each other in a "hierarchical" manner remains unclear. They all share an amino-terminal 11-mer repeat (11mr) amphipathic region suggested to be involved in LD targeting. Here, we show that, in vivo, this domain functions as a primary highly reversible LD targeting motif in Plin1-3, and, in vitro, we document reversible and competitive binding between a wild-type purified Plin1 11mr peptide and a mutant with reduced binding affinity to both "naked" and phospholipid-coated oil-water interfaces. We also present data suggesting that a second carboxy-terminal 4-helix bundle domain stabilizes LD binding in Plin1 more effectively than in Plin2, whereas it weakens binding in Plin3. These findings suggest that dual amphipathic helical regions mediate LD targeting and underpin the hierarchical binding of Plin1-3 to LDs.


Assuntos
Gotículas Lipídicas/metabolismo , Perilipinas/química , Perilipinas/metabolismo , Motivos de Aminoácidos , Linhagem Celular Tumoral , Humanos , Proteínas Mutantes/metabolismo , Óleos , Fosfolipídeos/metabolismo , Ligação Proteica , Domínios Proteicos , Água
12.
J Phys Chem B ; 114(9): 3276-84, 2010 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-20151713

RESUMO

Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.


Assuntos
Ar , Óvulo/química , Fosfatidilcolinas/química , Trioleína/química , Água/química , Adsorção , Pressão , Propriedades de Superfície , Tensão Superficial , Lipossomas Unilamelares/química
13.
J Lipid Res ; 50 Suppl: S329-34, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19029067

RESUMO

This review focuses on some new techniques to study the behavior of peptides and proteins bound to oil droplets. We will show how model peptides e.g., amphipathic alpha helices (AalphaH) and amphipathic beta strand (AbetaS) and some apolipoproteins adsorb to triacylglycerol (TAG) droplets and how they behave once adsorbed to the interface. While most of the studies described involve peptides and proteins at an oil/water interface, studies can also be carried out when the surface has been partially covered with phospholipids. This work is important because it examines biophysical changes that take place at lipid droplet interfaces and how this may relate to the metabolism of lipoproteins and lipid droplets.


Assuntos
Óleos/química , Peptídeos/química , Proteínas/química , Água/química , Adsorção , Animais , Humanos , Ligação Proteica
14.
Langmuir ; 25(4): 2322-30, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19146422

RESUMO

ApolipoproteinB (ApoB) is a lipid binding protein that is a nonexchangeable component of chylomicrons, VLDL, and LDL. In the liver and intestinal cells ApoB recruits lipid to form nascent triacylglycerol rich particles cotranslationally in the endoplasmic reticulum membrane which are then processed and secreted to form plasma lipoproteins. The N-terminal domain, which comprises the first 22% of apoB, recruits lipid in a controlled manner. The first 6% (residues 1-291) of the N-terminus does not bind lipid. The first lipid binding domain, including residues 292-782 (B6-17), forms a lipid binding pocket which is predicted to consist of 17 alpha-helices and 6 beta-strands. A structural model based on the X-ray structure of the homologues protein lipovitellin suggests that the N-terminal 6-8 helices and the beta-sheet interact with lipid while the C-terminal helices form a structural unit stabilizing the beta-sheet. Using isothermal drop tensiometry we showed that ApoB6.4-17 is surface active and binds to a triolein/water interface and exerts 16-19 mN/m of pressure (Pi) on that surface. The protein initially adsorbs slowly from aqueous solution to the surface but following compression and re-expansion it reaches equilibrium much faster. When Pi exceeds 16.9 mN/m part of the protein is ejected from the surface, but when compressed to high Pi the protein is never completely ejected indicating that part of the peptide is irreversibly anchored to the interface. The surface dilation modulus (epsilon) varies between 25-38 mN/m, and is predominantly elastic with a small viscous component. When compressed at an air/water interface ApoB6.4-17 has a limiting area of approximately 11 A2 per amino acid at lift off and only approximately 7 A2 per amino acid at the collapse Pi (28 mN/m). These values are about half the anticipated values if all the residues are at the surface. This suggests that ApoB6.4-17 retains some globular structure at an interface and does not completely denature at the surface, as many other globular proteins do. We suggest that while bound to the surface ApoB6.4-17 exhibits properties of both alpha and beta structure giving it unique and versatile characteristics at a hydrophobic interface.


Assuntos
Aminoácidos/química , Apolipoproteínas B/química , Fragmentos de Peptídeos/química , Adsorção , Sequência de Aminoácidos , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Soluções Tampão , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Substâncias Viscoelásticas
15.
Biochemistry ; 46(43): 12140-51, 2007 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17915945

RESUMO

Apolipoprotein A-I (apoA-I), the major protein of high-density lipoprotein (HDL), moves between HDL and triacylglycerol-rich lipoproteins during metabolism. We reported that apoA-I is conformationally flexible at the triolein/water (TO/W) interface, partially desorbing at low surface pressure (Pi) but totally desorbing at Pi > 19 mN/m. We now report the different behavior of the N- and C-terminal peptides of apoA-I ([1-44]apoA-I and [198-243]apoA-I) at the TO/W interface. While both peptides are surface active, [198-243]apoA-I is more stable at the TO/W interface. At equilibrium interfacial tension both peptides desorb from the interface when compressed, but [1-44]apoA-I is pushed off at 13 mN/m while [198-243]apoA-I can withstand Pi = 16 mN/m. Neither peptide is very elastic or flexible at the interface. Only at small changes of area (<8%), fast oscillations (4 and 8 s periods), and relatively low concentrations (2 x 10(-7) M) do these peptides show elastic behavior but with a relatively small modulus compared to that of apoA-I. When mixed together, they appear not to interact on the surface. [1-44]ApoA-I binds more rapidly but is replaced by [198-243]apoA-I within minutes. We suggest that when apoA-I partially desorbs from lipoprotein surfaces during lipid metabolism, the N-terminal is the first to detach while the C-terminal remains on the interface and only desorbs at higher pressures. Thus, the observations that different domains of apoA-I adsorb or desorb with small variations in surface pressure make apoA-I a very flexible protein with multiple functions, one of which is to stabilize surface pressure during lipoprotein metabolism as lipids move in and out of the lipoprotein surface.


Assuntos
Apolipoproteína A-I/química , Fragmentos de Peptídeos/química , Trioleína/química , Água/química , Adsorção
16.
Proc Natl Acad Sci U S A ; 103(18): 6871-6, 2006 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-16636271

RESUMO

Apolipoprotein B (apoB) is one of a unique group of proteins that form and bind to fat droplets, stabilize the emulsified fat, and direct their metabolism. ApoB, secreted on lipoproteins (emulsions), remains bound during lipid metabolism yet exhibits conformational flexibility. It has amphipathic beta-strand (AbetaS)-rich domains and amphipathic alpha-helix (AalphaH)-rich domains. We showed that two consensus AbetaS peptides of apoB bound strongly to hydrophobic interfaces [triolein/water (TO/W) and dodecane/water], were elastic, and were not pushed off the interface when the surface was compressed. In contrast, an AalphaH peptide modeling helical parts of apoB was forced off the TO/W interface by compression and readsorbed when the interface was expanded. In this report, the surface behavior of apoB-100 was studied at the TO/W interface. Solubilized apoB lowered the interfacial tension of TO/W in a concentration-dependent fashion. At equilibrium tension, if the surface was compressed, part of apoB was pushed off but quickly readsorbed when the surface was expanded. Even when the surface area was compressed by approximately 55%, part of the apoB molecule remained bound. The maximum surface pressure that apoB could withstand without being partially ejected was 13 mN/m. ApoB showed high elasticity at the TO/W interface. Based on studies of the consensus AbetaS and AalphaH peptides, we suggest that AbetaSs anchor apoB and are its nonexchangeable motif, whereas its conformational flexibility arises from both the elastic nature of the AbetaS and the ability of AalphaH domains of the molecule to desorb and readsorb rapidly in response to surface pressure changes.


Assuntos
Apolipoproteínas B/química , Trioleína/química , Água/química , Adsorção , Animais , Apolipoproteínas B/metabolismo , Elasticidade , Humanos , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Propriedades de Superfície
17.
J Biol Chem ; 280(6): 4154-65, 2005 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-15695525

RESUMO

Apolipoprotein A-I (apoA-I) is the major protein in high density lipoprotein (HDL). During lipid metabolism, apoA-I moves among HDL and triacylglycerol-rich lipoproteins. The main structure and the major lipid binding motif of apoA-I is the amphipathic alpha-helix. To understand how apoA-I behaves at hydrophobic lipoprotein interfaces, the interfacial properties of apoA-I and an amphipathic alpha-helical consensus sequence peptide (CSP) were studied at the triolein/water (TO/W) interface. CSP ((PLAEELRARLRAQLEELRERLG)2-NH2) contains two 22-residue tandem repeat sequences that form amphipathic alpha-helices modeling the central part of apoA-I. ApoA-I or CSP added into the aqueous phase surrounding a triolein drop lowered the interfacial tension (gamma) of TO/W in a concentration- and time-dependent fashion. The gamma(TO/W) was lowered approximately 16 millinewtons (mN)/m by apoA-I at 1.4 x 10(-6) m and approximately 15 mN/m by CSP at 2.6 x 10(-6) m. At equilibrium gamma, both apoA-I and CSP desorbed from the interface when compressed and readsorbed when expanded. The maximum surface pressure CSP could withstand without being ejected (PiMAX) was 16 mN/m. The PiMAX) of apoA-I was only 14.8 mN/m, but re-adsorption kinetics suggested that only part of the apoA-I desorbed at Pi between 14.8 and 19 mN/m. However, above approximately 19 mN/m (PiOFF) the entire apoA-I molecule desorbed into the water. ApoA-I was more flexible at the TO/W interface than CSP and showed more elasticity at oscillation periods 4-128 s even at high compression, whereas CSP was elastic only at faster periods (4 and 8 s) and moderate compression. Flexibility and surface pressure-mediated desorption and re-adsorption of apoA-I probably provides lipoprotein stability during metabolic-remodeling reactions in plasma.


Assuntos
Apolipoproteína A-I/química , Trioleína/química , Água/química , Apolipoproteína A-I/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cinética , Lipídeos/química , Lipoproteínas/química , Lipoproteínas HDL/química , Modelos Biológicos , Oscilometria , Peptídeos/química , Pressão , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Fatores de Tempo , Triglicerídeos/química
18.
J Lipid Res ; 45(9): 1704-15, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15231853

RESUMO

The region between residues 968 and 1882 of apolipoprotein B (apoB-21 to apoB-41) is rich in amphipathic beta strands (AbetaSs) and promotes the assembly of primordial triacylglyceride (TAG)-rich lipoproteins. To understand the importance of AbetaS in recruiting TAG, the interfacial properties of two AbetaS consensus peptides, P12 and P27, were studied at dodecane/water (DD/W) and triolein/water (TO/W) interfaces. P12 (acetyl-LSLSLNADLRLK-amide) and P27 (acetyl-LSLSLNADLRLKNGNLSLSLNADLRLK-amide), when added into the aqueous phase surrounding a suspended oil drop (dodecane or triolein), decreased the interfacial tension (gamma) in a concentration-dependent manner. At the DD/W interface, 1 x 10(-5) M P12 decreased gamma to approximately 20 mN/m and 6.6 x 10(-6) M P27 decreased gamma to approximately 13 mN/m. At the TO/W interface, 1.5 x 10(-5) M P12 decreased gamma to approximately 14 mN/m and 9.0 x 10(-6) M P27 decreased gamma to approximately 12 mN/m. The surface area of both peptides was between 11.2 and 15.1 angstroms2 per residue, consistent with beta sheets lying flat on DD/W and TO/W interfaces. P12 and P27 are almost purely elastic on DD/W, TO/W, and air/water interfaces. When P12 and P27 were compressed beyond the equilibrium gamma to as low as 4 mN/m, they could not be readily desorbed from either interface. These properties probably help in assembling nascent TAG-rich lipoproteins, and AbetaS may anchor apoB to beta lipoproteins.


Assuntos
Apolipoproteínas B/química , Sequência Consenso , Peptídeos/química , Trioleína/química , Água/química , Adsorção , Alcanos/química , Sequência de Aminoácidos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Tensão Superficial , Fatores de Tempo
19.
J Biol Chem ; 278(39): 37480-91, 2003 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12842901

RESUMO

Amphipathic alpha-helices are the main structure and the major lipid binding motif of exchangeable apolipoproteins. To understand how these apolipoproteins behave at an hydrophobic lipoprotein interface, the interfacial properties of a consensus sequence peptide (CSP) derived from three exchangeable apolipoproteins (A-I, A-IV, and E) were studied using an oil drop tensiometer at air/water (A/W) and dodecane/water (DD/W) interfaces. CSP ((PLAEELRARLRAQLEELRERLG)2-NH2) contains two 22-amino acid tandem repeat sequences that form amphipathic alpha-helices. CSP, when added into the aqueous phase, lowered the interfacial tension (gamma) of A/W and DD/W in a concentration-dependent fashion. The gammaA/W was lowered approximately 24 mn/m, and gammaDD/W approximately 31 mn/m, indicating a greater affinity of CSP for DD/W. Using the Gibbs equation for surface, the surface area per CSP molecule was estimated at approximately 702 A2 ( approximately 16 A2/amino acid) on A/W and approximately 622 A2 on DD/W ( approximately 14 A2/amino acid) suggesting that adsorbed CSP lies flat with alpha-helices in the plane of both interfaces. At equilibrium gamma, CSP desorbed from the interface when compressed and re-adsorbed when expanded. The adsorption rate was concentration-dependent, but the desorption rate was not. Less CSP desorbed from DD/W than A/W indicating that CSP has higher affinity for DD/W. Dynamic analysis of elasticity shows that the faster the oscillation period (4, 8 s) and the lower the oscillation amplitude the more elastic the surfaces. CSP can be compressed 6-12% while remaining on the surface, but large increases in pressure eject it from the surface. We suggest that surface pressure-mediated desorption and readsorption of amphipathic alpha-helices provide lipoprotein stability during remodeling reactions in plasma.


Assuntos
Apolipoproteína A-I/química , Apolipoproteínas A/química , Apolipoproteínas E/química , Sequência Consenso , Sequência de Aminoácidos , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Tensão Superficial
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa