Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Phys Rev Lett ; 132(4): 048202, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335332

RESUMO

Because of their aperiodic nature, quasicrystals are one of the least understood phases in statistical physics. One significant complication they present in comparison to their periodic counterparts is the fact that any quasicrystal can be realized as an exponentially large number of different tilings, resulting in a significant contribution to the quasicrystal entropy. Here, we use free-energy calculations to demonstrate that it is this configurational entropy which stabilizes a dodecagonal quasicrystal in a binary mixture of hard spheres on a plane. Our calculations also allow us to quantitatively confirm that in this system all tiling realizations are essentially equally likely, with free-energy differences less than 0.0001k_{B}T per particle-an observation that could be related to the observation of only random tilings in soft-matter quasicrystals. Owing to the simplicity of the model and its available counterparts in colloidal experiments, we believe that this system is an excellent candidate to achieve the long-awaited quasicrystal self-assembly on the micron scale.

2.
J Chem Phys ; 161(2)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-38995079

RESUMO

Conventional molecular dynamics (MD) simulations struggle when simulating particles with steeply varying interaction potentials due to the need to use a very short time step. Here, we demonstrate that an event-driven Monte Carlo (EDMC) approach was first introduced by Peters and de With [Phys. Rev. E 85, 026703 (2012)] and represents an excellent substitute for MD in the canonical ensemble. In addition to correctly reproducing the static thermodynamic properties of the system, the EDMC method closely mimics the dynamics of systems of particles interacting via the steeply repulsive Weeks-Chandler-Andersen (WCA) potential. In comparison to time-driven MD simulations, EDMC runs faster by over an order of magnitude at sufficiently low temperatures. Moreover, the lack of a finite time step in EDMC circumvents the need to trade accuracy against the simulation speed associated with the choice of time step in MD. We showcase the usefulness of this model to explore the phase behavior of the WCA model at extremely low temperatures and to demonstrate that spontaneous nucleation and growth of the Laves phases are possible at temperatures significantly lower than previously reported.

3.
J Chem Phys ; 160(22)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38869314

RESUMO

One method for computationally determining phase boundaries is to explicitly simulate a direct coexistence between the two phases of interest. Although this approach works very well for fluid-fluid coexistences, it is often considered to be less useful for fluid-crystal transitions, as additional care must be taken to prevent the simulation boundaries from imposing unwanted strains on the crystal phase. Here, we present a simple adaptation to the direct coexistence method that nonetheless allows us to obtain highly accurate predictions of fluid-crystal coexistence conditions, assuming that a fluid-crystal interface can be readily simulated. We test our approach on hard spheres, the screened Coulomb potential, and a 2D patchy-particle model. In all cases, we find excellent agreement between the direct coexistence approach and (much more cumbersome) free-energy calculation methods. Moreover, the method is sufficiently accurate to resolve the (tiny) free-energy difference between the face-centered cubic and hexagonally close-packed crystal of hard spheres in the thermodynamic limit. The simplicity of this method also ensures that it can be trivially implemented in essentially any simulation method or package. Hence, this approach provides an excellent alternative to free-energy based methods for the precise determination of phase boundaries.

4.
Soft Matter ; 19(14): 2654-2663, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36971334

RESUMO

Hard spheres are one of the most fundamental model systems in soft matter physics, and have been instrumental in shedding light on nearly every aspect of classical condensed matter. Here, we add one more important phase to the list that hard spheres form: quasicrystals. Specifically, we use simulations to show that an extremely simple, purely entropic model system, consisting of two sizes of hard spheres resting on a flat plane, can spontaneously self-assemble into two distinct random-tiling quasicrystal phases. The first quasicrystal is a dodecagonal square-triangle tiling, commonly observed in a large variety of colloidal systems. The second quasicrystal has, to our knowledge, never been observed in either experiments or simulations. It exhibits octagonal symmetry, and consists of three types of tiles: triangles, small squares, and large squares, whose relative concentration can be continuously varied by tuning the number of smaller spheres present in the system. The observed tile composition of the self-assembled quasicrystals agrees very well with the theoretical prediction we obtain by considering the four-dimensional (lifted) representation of the quasicrystal. Both quasicrystal phases form reliably and rapidly over a significant part of parameter space. Our results demonstrate that entropy combined with a set of geometrically compatible, densely packed tiles can be sufficient ingredients for the self-assembly of colloidal quasicrystals.

5.
J Chem Phys ; 158(13): 134512, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37031101

RESUMO

The relationship between structure and dynamics in glassy fluids remains an intriguing open question. Recent work has shown impressive advances in our ability to predict local dynamics using structural features, most notably due to the use of advanced machine learning techniques. Here, we explore whether a simple linear regression algorithm combined with intelligently chosen structural order parameters can reach the accuracy of the current, most advanced machine learning approaches for predicting dynamic propensity. To achieve this, we introduce a method to pinpoint the cage state of the initial configuration-i.e., the configuration consisting of the average particle positions when particle rearrangement is forbidden. We find that, in comparison to both the initial state and the inherent state, the structure of the cage state is highly predictive of the long-time dynamics of the system. Moreover, by combining the cage state information with the initial state, we are able to predict dynamic propensities with unprecedentedly high accuracy over a broad regime of time scales, including the caging regime.

6.
J Chem Phys ; 159(13)2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37787142

RESUMO

The interplay between crystal nucleation and the structure of the metastable fluid has been a topic of significant debate over recent years. In particular, it has been suggested that even in simple model systems such as hard or charged colloids, crystal nucleation might be foreshadowed by significant fluctuations in local structure around the location where the nucleus first arises. We investigate this using computer simulations of spontaneous nucleation events in both hard and charged colloidal systems. To detect local structural variations, we use both standard and unsupervised machine learning methods capable of finding hidden structures in the metastable fluid phase. We track numerous nucleation events for the face-centered cubic and body-centered cubic crystals on a local level and demonstrate that all signs of crystallinity emerge simultaneously from the very start of the nucleation process. We thus conclude that we observe no precursor for the crystal nucleation of hard and charged colloids.

7.
Eur Phys J E Soft Matter ; 45(3): 22, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35274181

RESUMO

 Hard spheres are arguably one of the most fundamental model systems in soft matter physics, and hence a common topic of simulation studies. Event-driven simulation methods provide an efficient method for studying the phase behavior and dynamics of hard spheres under a wide range of different conditions. Here, we examine the impact of several optimization strategies for speeding up event-driven molecular dynamics of hard spheres and present a light-weight simulation code that outperforms existing simulation codes over a large range of system sizes and packing fractions. The presented differences in simulation speed, typically a factor of five to ten, save significantly on both CPU time and energy consumption and may be a crucial factor for studying slow processes such as crystal nucleation and glassy dynamics.


Assuntos
Modelos Biológicos , Simulação de Dinâmica Molecular
8.
J Chem Phys ; 156(20): 204503, 2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35649836

RESUMO

In the quest to understand how structure and dynamics are connected in glasses, a number of machine learning based methods have been developed that predict dynamics in supercooled liquids. These methods include both increasingly complex machine learning techniques and increasingly sophisticated descriptors used to describe the environment around particles. In many cases, both the chosen machine learning technique and choice of structural descriptors are varied simultaneously, making it hard to quantitatively compare the performance of different machine learning approaches. Here, we use three different machine learning algorithms-linear regression, neural networks, and graph neural networks-to predict the dynamic propensity of a glassy binary hard-sphere mixture using as structural input a recursive set of order parameters recently introduced by Boattini et al. [Phys. Rev. Lett. 127, 088007 (2021)]. As we show, when these advanced descriptors are used, all three methods predict the dynamics with nearly equal accuracy. However, the linear regression is orders of magnitude faster to train, making it by far the method of choice.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos
9.
J Chem Phys ; 156(7): 074503, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35183088

RESUMO

The correlation between the local structure and the propensity for structural rearrangements has been widely investigated in glass forming liquids and glasses. In this paper, we use the excess two-body entropy S2 and tetrahedrality ntet as the per-particle local structural order parameters to explore such correlations in a three-dimensional model glass subjected to cyclic shear deformation. We first show that for both liquid configurations and the corresponding inherent structures, local ordering increases upon lowering temperature, signaled by a decrease in the two-body entropy and an increase in tetrahedrality. When the inherent structures, or glasses, are periodically sheared athermally, they eventually reach absorbing states for small shear amplitudes, which do not change from one cycle to the next. Large strain amplitudes result in the formation of shear bands, within which particle motion is diffusive. We show that in the steady state, there is a clear difference in the local structural environment of particles that will be part of plastic rearrangements during the next shear cycle and that of particles that are immobile. In particular, particles with higher S2 and lower ntet are more likely to go through rearrangements irrespective of the average energies of the configurations and strain amplitude. For high shear, we find very distinctive local order outside the mobile shear band region, where almost 30% of the particles are involved in icosahedral clusters, contrasting strongly with the fraction of <5% found inside the shear band.

10.
Phys Rev Lett ; 127(8): 088007, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34477414

RESUMO

Predicting the local dynamics of supercooled liquids based purely on local structure is a key challenge in our quest for understanding glassy materials. Recent years have seen an explosion of methods for making such a prediction, often via the application of increasingly complex machine learning techniques. The best predictions so far have involved so-called Graph Neural Networks (GNNs) whose accuracy comes at a cost of models that involve on the order of 10^{5} fit parameters. In this Letter, we propose that the key structural ingredient to the GNN method is its ability to consider not only the local structure around a central particle, but also averaged structural features centered around nearby particles. We demonstrate that this insight can be exploited to design a significantly more efficient model that provides essentially the same predictive power at a fraction of the computational complexity (approximately 1000 fit parameters), and demonstrate its success by fitting the dynamic propensity of Kob-Andersen and binary hard-sphere mixtures. We then use this to make predictions regarding the importance of radial and angular descriptors in the dynamics of both models.

11.
Phys Rev Lett ; 127(19): 198001, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34797147

RESUMO

We propose a general formalism to characterize orientational frustration of smectic liquid crystals in confinement by interpreting the emerging networks of grain boundaries as objects with a topological charge. In a formal idealization, this charge is distributed in pointlike units of quarter-integer magnitude, which we identify with tetratic disclinations located at the end points and nodes. This coexisting nematic and tetratic order is analyzed with the help of extensive Monte Carlo simulations for a broad range of two-dimensional confining geometries as well as colloidal experiments, showing how the observed defect networks can be universally reconstructed from simple building blocks. We further find that the curvature of the confining wall determines the anchoring behavior of grain boundaries, such that the number of nodes in the emerging networks and the location of their end points can be tuned by changing the number and smoothness of corners, respectively.

12.
Soft Matter ; 17(3): 516-522, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33226041

RESUMO

When considering the flow of currents through obstacles, one core expectation is that the total resistance of sequential single resistors is additive. While this rule is most commonly applied to electronic circuits, it also applies to other transport phenomena such as the flow of colloids or nanoparticles through channels containing multiple obstacles, as long as these obstacles are sufficiently far apart. Here we explore the breakdown of this additivity for fluids of repulsive colloids driven over two energetic barriers in a microchannel, using real-space microscopy experiments, particle-resolved simulations, and dynamical density functional theory. If the barrier separation is comparable to the particle correlation length, the resistance is highly non-additive, such that the resistance added by the second barrier can be significantly higher or lower than that of the first. Surprisingly, in some cases the second barrier can even add a negative resistance, such that two identical barriers are easier to cross than a single one. We explain this counterintuitive observation in terms of the structuring of particles trapped between the barriers.

13.
J Chem Phys ; 154(17): 174501, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241071

RESUMO

Glass formers are characterized by their ability to avoid crystallization. As monodisperse systems tend to rapidly crystallize, the most common glass formers in simulations are systems composed of mixtures of particles with different sizes. Here, we make use of the ability of patchy particles to change their local structure to propose them as monodisperse glass formers. We explore monodisperse systems with two patch geometries: a 12-patch geometry that enhances the formation of icosahedral clusters and an 8-patch geometry that does not appear to strongly favor any particular local structure. We show that both geometries avoid crystallization and present glassy features at low temperatures. However, the 8-patch geometry better preserves the structure of a simple liquid at a wide range of temperatures and packing fractions, making it a good candidate for a monodisperse glass former.

14.
J Chem Phys ; 154(16): 164905, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33940833

RESUMO

Charged colloidal particles-on both the nano and micron scales-have been instrumental in enhancing our understanding of both atomic and colloidal crystals. These systems can be straightforwardly realized in the lab and tuned to self-assemble into body-centered-cubic (BCC) and face-centered-cubic (FCC) crystals. While these crystals will always exhibit a finite number of point defects, including vacancies and interstitials-which can dramatically impact their material properties-their existence is usually ignored in scientific studies. Here, we use computer simulations and free-energy calculations to characterize vacancies and interstitials in FCC and BCC crystals of point-Yukawa particles. We show that, in the BCC phase, defects are surprisingly more common than in the FCC phase, and the interstitials manifest as so-called crowdions: an exotic one-dimensional defect proposed to exist in atomic BCC crystals. Our results open the door to directly observe these elusive defects in the lab.

15.
Phys Rev Lett ; 124(20): 208005, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501099

RESUMO

The link between local structure and dynamical slowdown in glassy fluids has been the focus of intense debate for the better part of a century. Nonetheless, a simple method to predict the dynamical behavior of a fluid purely from its local structural features is still missing. Here, we demonstrate that the diffusivity of perhaps the most fundamental family of glass formers-hard sphere mixtures-can be accurately predicted based on just the packing fraction and a simple order parameter measuring the tetrahedrality of the local structure. Essentially, we show that the number of tetrahedral clusters in a hard sphere mixture is directly linked to its global diffusivity. Moreover, the same order parameter is capable of locally pinpointing particles in the system with high and low mobility. We attribute the power of the local tetrahedrality for predicting local and global dynamics to the high stability of tetrahedral clusters, the most fundamental building and densest-packing building blocks for a disordered fluid.

16.
Soft Matter ; 16(17): 4155-4161, 2020 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-32266918

RESUMO

Binary mixtures of hard spheres can spontaneously self-assemble into binary crystals. Computer simulations have been especially useful in mapping out the phase behaviour of these mixtures, under the assumption that the stoichiometry of the binary crystal is ideal. Here we show that for a size ratio of q = 0.82 this assumption is not valid near the coexistence region between the fluid and the stable binary crystal, the MgZn2 Laves phase. Instead we find a surprisingly high number of antisite defects: up to 2% of the large spheres are replaced by small spheres in equilibrium. We demonstrate that the defect concentration can be estimated using simple approximations, providing an easy way to identify systems where antisite defects play an important role. Our results shed new light on the self-assembly of colloidal Laves phases, and demonstrate the importance of antisite defects in binary crystals.

17.
J Chem Phys ; 152(8): 084501, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32113356

RESUMO

We explore the effect of directionality on rotational and translational relaxation in glassy systems of patchy particles. Using molecular dynamics simulations, we analyze the impact of two distinct patch geometries, one that enhances the local icosahedral structure and the other one that does not strongly affect the local order. We find that in nearly all investigated cases, rotational relaxation takes place on a much faster time scale than translational relaxation. By comparing to a simplified dynamical Monte Carlo model, we illustrate that rotational diffusion can be qualitatively explained as purely local motion within a fixed environment, which is not coupled strongly to the cage-breaking dynamics required for translational relaxation. Nonetheless, icosahedral patch placement has a profound effect on the local structure of the system, resulting in a dramatic slowdown at low temperatures, which is strongest at an intermediate "optimal" patch size.

18.
J Chem Phys ; 153(6): 064902, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287453

RESUMO

Simple models for spherical particles with a soft shell have been shown to self-assemble into numerous crystal phases and even quasicrystals. However, most of these models rely on a simple pairwise interaction, which is usually a valid approximation only in the limit of small deformations, i.e., low densities. In this work, we consider a many-body yet simple model for the evaluation of the elastic energy associated with the deformation of a spherical shell. The resulting energy evaluation, however, is relatively expensive for direct use in simulations. We significantly reduce the associated numerical cost by fitting the potential using a set of symmetry functions. We propose a method for selecting a suitable set of symmetry functions that capture the most relevant features of the particle's environment in a systematic manner. The fitted interaction potential is then used in Monte Carlo simulations to draw the phase diagram of the system in two dimensions. The system is found to form both a fluid and a hexagonal crystal phase.

19.
J Chem Phys ; 152(20): 204901, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486697

RESUMO

One versatile route to the creation of two-dimensional crystal structures on the nanometer to micrometer scale is the self-assembly of colloidal particles at an interface. Here, we explore the crystal phases that can be expected from the self-assembly of mixtures of spherical particles of two different sizes, which we map to (additive or non-additive) hard-disk mixtures. We map out the infinite-pressure phase diagram for these mixtures using Floppy Box Monte Carlo simulations to systematically sample candidate crystal structures with up to 12 disks in the unit cell. As a function of the size ratio and the number ratio of the two species of particles, we find a rich variety of periodic crystal structures. Additionally, we identify random tiling regions to predict random tiling quasicrystal stability ranges. Increasing non-additivity both gives rise to additional crystal phases and broadens the stability regime for crystal structures involving a large number of large-small contacts, including random tilings. Our results provide useful guidelines for controlling the self-assembly of colloidal particles at interfaces.

20.
Soft Matter ; 15(48): 9886-9893, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31799588

RESUMO

Glasses remain an elusive and poorly understood state of matter. It is not clear how we can control the macroscopic dynamics of glassy systems by tuning the properties of their microscopic building blocks. In this paper, we propose a simple directional colloidal model that reinforces the optimal icosahedral local structure of binary hard-sphere glasses. We show that this specific symmetry results in a dramatic slowing down of the dynamics. Our results open the door to controlling the dynamics of dense glassy systems by selectively promoting specific local structural environments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa