Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Glob Chang Biol ; 30(1): e17104, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273555

RESUMO

Globally pervasive increases in atmospheric CO2 and nitrogen (N) deposition could have substantial effects on plant communities, either directly or mediated by their interactions with soil nutrient limitation. While the direct consequences of N enrichment on plant communities are well documented, potential interactions with rising CO2 and globally widespread phosphorus (P) limitation remain poorly understood. We investigated the consequences of simultaneous elevated CO2 (eCO2 ) and N and P additions on grassland biodiversity, community and functional composition in P-limited grasslands. We exposed soil-turf monoliths from limestone and acidic grasslands that have received >25 years of N additions (3.5 and 14 g m-2 year-1 ) and 11 (limestone) or 25 (acidic) years of P additions (3.5 g m-2 year-1 ) to eCO2 (600 ppm) for 3 years. Across both grasslands, eCO2 , N and P additions significantly changed community composition. Limestone communities were more responsive to eCO2 and saw significant functional shifts resulting from eCO2 -nutrient interactions. Here, legume cover tripled in response to combined eCO2 and P additions, and combined eCO2 and N treatments shifted functional dominance from grasses to sedges. We suggest that eCO2 may disproportionately benefit P acquisition by sedges by subsidising the carbon cost of locally intense root exudation at the expense of co-occurring grasses. In contrast, the functional composition of the acidic grassland was insensitive to eCO2 and its interactions with nutrient additions. Greater diversity of P-acquisition strategies in the limestone grassland, combined with a more functionally even and diverse community, may contribute to the stronger responses compared to the acidic grassland. Our work suggests we may see large changes in the composition and biodiversity of P-limited grasslands in response to eCO2 and its interactions with nutrient loading, particularly where these contain a high diversity of P-acquisition strategies or developmentally young soils with sufficient bioavailable mineral P.


Assuntos
Dióxido de Carbono , Pradaria , Dióxido de Carbono/análise , Fósforo , Plantas , Poaceae , Nitrogênio , Solo/química , Carbonato de Cálcio
2.
Glob Chang Biol ; 30(1): e17086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273496

RESUMO

Plant communities are being exposed to changing environmental conditions all around the globe, leading to alterations in plant diversity, community composition, and ecosystem functioning. For herbaceous understorey communities in temperate forests, responses to global change are postulated to be complex, due to the presence of a tree layer that modulates understorey responses to external pressures such as climate change and changes in atmospheric nitrogen deposition rates. Multiple investigative approaches have been put forward as tools to detect, quantify and predict understorey responses to these global-change drivers, including, among others, distributed resurvey studies and manipulative experiments. These investigative approaches are generally designed and reported upon in isolation, while integration across investigative approaches is rarely considered. In this study, we integrate three investigative approaches (two complementary resurvey approaches and one experimental approach) to investigate how climate warming and changes in nitrogen deposition affect the functional composition of the understorey and how functional responses in the understorey are modulated by canopy disturbance, that is, changes in overstorey canopy openness over time. Our resurvey data reveal that most changes in understorey functional characteristics represent responses to changes in canopy openness with shifts in macroclimate temperature and aerial nitrogen deposition playing secondary roles. Contrary to expectations, we found little evidence that these drivers interact. In addition, experimental findings deviated from the observational findings, suggesting that the forces driving understorey change at the regional scale differ from those driving change at the forest floor (i.e., the experimental treatments). Our study demonstrates that different approaches need to be integrated to acquire a full picture of how understorey communities respond to global change.


Assuntos
Ecossistema , Florestas , Árvores , Plantas , Nitrogênio
3.
New Phytol ; 235(5): 2046-2053, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35622460

RESUMO

Mature temperate woodlands are commonly dominated by ectomycorrhizal trees, whereas understory plants predominantly form arbuscular mycorrhizal associations. Due to differences in plant-fungus compatibility between canopy and ground layer vegetation the 'mycorrhizal mediation hypothesis' predicts that herbaceous plant establishment may be limited by a lack of suitable mycorrhizal fungal inoculum. We examined plant species data for 103 woodlands across Great Britain recorded in 1971 and in 2000 to test whether herbaceous plant species richness was related to the proportion of arbuscular mycorrhizal woody plants. We compared the effect of mycorrhizal type with other important drivers of woodland plant species richness. We found a positive effect of the relative abundance of arbuscular mycorrhizal woody plants on herbaceous plant species richness. The size of the observed effect was smaller than that of pH. Moreover, the effect persisted over time, despite many woodlands undergoing marked successional change and increased understorey shading. This work supports the mycorrhizal mediation hypothesis in British woodlands and suggests that increased abundance of arbuscular mycorrhizal woody plants is associated with greater understory plant species richness.


Assuntos
Micorrizas , Florestas , Plantas/microbiologia , Árvores/microbiologia , Madeira
4.
Nature ; 530(7588): 85-8, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26842058

RESUMO

There is considerable concern over declines in insect pollinator communities and potential impacts on the pollination of crops and wildflowers. Among the multiple pressures facing pollinators, decreasing floral resources due to habitat loss and degradation has been suggested as a key contributing factor. However, a lack of quantitative data has hampered testing for historical changes in floral resources. Here we show that overall floral rewards can be estimated at a national scale by combining vegetation surveys and direct nectar measurements. We find evidence for substantial losses in nectar resources in England and Wales between the 1930s and 1970s; however, total nectar provision in Great Britain as a whole had stabilized by 1978, and increased from 1998 to 2007. These findings concur with trends in pollinator diversity, which declined in the mid-twentieth century but stabilized more recently. The diversity of nectar sources declined from 1978 to 1990 and thereafter in some habitats, with four plant species accounting for over 50% of national nectar provision in 2007. Calcareous grassland, broadleaved woodland and neutral grassland are the habitats that produce the greatest amount of nectar per unit area from the most diverse sources, whereas arable land is the poorest with respect to amount of nectar per unit area and diversity of nectar sources. Although agri-environment schemes add resources to arable landscapes, their national contribution is low. Owing to their large area, improved grasslands could add substantially to national nectar provision if they were managed to increase floral resource provision. This national-scale assessment of floral resource provision affords new insights into the links between plant and pollinator declines, and offers considerable opportunities for conservation.


Assuntos
Biodiversidade , Flores/química , Flores/crescimento & desenvolvimento , Néctar de Plantas/análise , Plantas/química , Plantas/classificação , Animais , Flores/classificação , Pradaria , Insetos/fisiologia , Medicago/química , Medicago/crescimento & desenvolvimento , Plantas/metabolismo , Polinização , Especificidade da Espécie , Reino Unido
5.
Angew Chem Int Ed Engl ; 61(4): e202112880, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34694675

RESUMO

The melting behaviour of metal-organic frameworks (MOFs) has aroused significant research interest in the areas of materials science, condensed matter physics and chemical engineering. This work first introduces a novel method to fabricate a bimetallic MOF glass, through melt-quenching of the cobalt-based zeolitic imidazolate framework (ZIF) [ZIF-62(Co)] with an adsorbed ferric coordination complex. The high-temperature chemically reactive ZIF-62(Co) liquid facilitates the formation of coordinative bonds between Fe and imidazolate ligands, incorporating Fe nodes into the framework after quenching. The resultant Co-Fe bimetallic MOF glass therefore shows a significantly enhanced oxygen evolution reaction performance. The novel bimetallic MOF glass, when combined with the facile and scalable mechanochemical synthesis technique for both discrete powders and surface coatings on flexible substrates, enables significant opportunities for catalytic device assembly.

6.
J Anim Ecol ; 90(2): 404-414, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33067860

RESUMO

Grassland fertilisation drives non-random plant loss resulting in areas dominated by perennial grass species. How these changes cascade through linked trophic levels, however, is not well understood. We studied how grassland fertilisation propagates change through the plant assemblage into the plant-flower-visitor, plant-leaf miner and leaf miner-parasitoid networks using a year's data collection from a long-term grassland fertiliser application experiment. Our experiment had three fertiliser treatments each applied to replicate plots 15 m2 in size: mineral fertiliser, farmyard manure, and mineral fertiliser and farmyard manure combined, along with a control of no fertiliser. The combined treatment had the most significant impact, and both plant species richness and floral abundance decreased with the addition of fertiliser. While insect species richness was unaffected by fertiliser treatment, fertilised plots had a significantly higher abundance of leaf miners and parasitoids and a significantly lower abundance of bumblebees. The plant-flower-visitor and plant-herbivore networks showed higher values of vulnerability and lower modularity with fertiliser addition, while leaf miner-parasitoid networks showed a rise in generality. The different groups of insects were impacted by fertilisers to varying degrees: while the effect on abundance was the highest for leaf miners, the vulnerability and modularity of flower-visitor networks was the most affected. The impact on the abundance of leaf miners was positive and three times higher than the impact on parasitoids, and the impact on bumblebee abundance was negative and double the magnitude of impact on flower abundance. Overall, our results show that while insect species richness was unaffected by fertilisers, network structure changed significantly as the replacement of forbs by grasses resulted in changes in relative abundance across trophic levels, with the direction of change depending on the type of network. Synthesis. By studying multiple networks simultaneously, we were able to rank the relative impact of habitat change on the different groups of species within the community. This provided a more holistic picture of the impact of agricultural intensification and provides useful information when deciding on priorities for mitigation.


Assuntos
Fertilizantes , Polinização , Animais , Abelhas , Ecossistema , Insetos , Plantas
7.
J Chem Phys ; 153(3): 034107, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32716189

RESUMO

We present NECI, a state-of-the-art implementation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, a method based on a stochastic application of the Hamiltonian matrix on a sparse sampling of the wave function. The program utilizes a very powerful parallelization and scales efficiently to more than 24 000 central processing unit cores. In this paper, we describe the core functionalities of NECI and its recent developments. This includes the capabilities to calculate ground and excited state energies, properties via the one- and two-body reduced density matrices, as well as spectral and Green's functions for ab initio and model systems. A number of enhancements of the bare FCIQMC algorithm are available within NECI, allowing us to use a partially deterministic formulation of the algorithm, working in a spin-adapted basis or supporting transcorrelated Hamiltonians. NECI supports the FCIDUMP file format for integrals, supplying a convenient interface to numerous quantum chemistry programs, and it is licensed under GPL-3.0.

8.
Glob Chang Biol ; 25(12): 3996-4007, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31386782

RESUMO

Soil organic matter (SOM) is an indicator of sustainable land management as stated in the global indicator framework of the United Nations Sustainable Development Goals (SDG Indicator 15.3.1). Improved forecasting of future changes in SOM is needed to support the development of more sustainable land management under a changing climate. Current models fail to reproduce historical trends in SOM both within and during transition between ecosystems. More realistic spatio-temporal SOM dynamics require inclusion of the recent paradigm shift from SOM recalcitrance as an 'intrinsic property' to SOM persistence as an 'ecosystem interaction'. We present a soil profile, or pedon-explicit, ecosystem-scale framework for data and models of SOM distribution and dynamics which can better represent land use transitions. Ecosystem-scale drivers are integrated with pedon-scale processes in two zones of influence. In the upper vegetation zone, SOM is affected primarily by plant inputs (above- and belowground), climate, microbial activity and physical aggregation and is prone to destabilization. In the lower mineral matrix zone, SOM inputs from the vegetation zone are controlled primarily by mineral phase and chemical interactions, resulting in more favourable conditions for SOM persistence. Vegetation zone boundary conditions vary spatially at landscape scales (vegetation cover) and temporally at decadal scales (climate). Mineral matrix zone boundary conditions vary spatially at landscape scales (geology, topography) but change only slowly. The thicknesses of the two zones and their transport connectivity are dynamic and affected by plant cover, land use practices, climate and feedbacks from current SOM stock in each layer. Using this framework, we identify several areas where greater knowledge is needed to advance the emerging paradigm of SOM dynamics-improved representation of plant-derived carbon inputs, contributions of soil biota to SOM storage and effect of dynamic soil structure on SOM storage-and how this can be combined with robust and efficient soil monitoring.


Assuntos
Ecossistema , Solo , Carbono , Clima , Plantas
9.
J Chem Phys ; 151(9): 094104, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31492066

RESUMO

We provide a spin-adapted formulation of the Full Configuration Interaction Quantum Monte Carlo (FCIQMC) algorithm, based on the Graphical Unitary Group Approach (GUGA), which enables the exploitation of SU(2) symmetry within this stochastic framework. Random excitation generation and matrix element calculation on the Shavitt graph of GUGA can be efficiently implemented via a biasing procedure on the branching diagram. The use of a spin-pure basis explicitly resolves the different spin-sectors and ensures that the stochastically sampled wavefunction is an eigenfunction of the total spin operator S^2. The method allows for the calculation of states with low or intermediate spin in systems dominated by Hund's first rule, which are otherwise generally inaccessible. Furthermore, in systems with small spin gaps, the new methodology enables much more rapid convergence with respect to walker number and simulation time. Some illustrative applications of the GUGA-FCIQMC method are provided: computation of the 2F - 4F spin gap of the cobalt atom in large basis sets, achieving chemical accuracy to experiment, and the Σg+1, Σg+3, Σg+5, and Σg+7 spin-gaps of the stretched N2 molecule, an archetypal strongly correlated system.

10.
Glob Chang Biol ; 22(8): 2929-38, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26854892

RESUMO

The importance of managing land to optimize carbon sequestration for climate change mitigation is widely recognized, with grasslands being identified as having the potential to sequester additional carbon. However, most soil carbon inventories only consider surface soils, and most large-scale surveys group ecosystems into broad habitats without considering management intensity. Consequently, little is known about the quantity of deep soil carbon and its sensitivity to management. From a nationwide survey of grassland soils to 1 m depth, we show that carbon in grassland soils is vulnerable to management and that these management effects can be detected to considerable depth down the soil profile, albeit at decreasing significance with depth. Carbon concentrations in soil decreased as management intensity increased, but greatest soil carbon stocks (accounting for bulk density differences), were at intermediate levels of management. Our study also highlights the considerable amounts of carbon in subsurface soil below 30 cm, which is missed by standard carbon inventories. We estimate grassland soil carbon in Great Britain to be 2097 Tg C to a depth of 1 m, with ~60% of this carbon being below 30 cm. Total stocks of soil carbon (t ha(-1) ) to 1 m depth were 10.7% greater at intermediate relative to intensive management, which equates to 10.1 t ha(-1) in surface soils (0-30 cm), and 13.7 t ha(-1) in soils from 30 to 100 cm depth. Our findings highlight the existence of substantial carbon stocks at depth in grassland soils that are sensitive to management. This is of high relevance globally, given the extent of land cover and large stocks of carbon held in temperate managed grasslands. Our findings have implications for the future management of grasslands for carbon storage and climate mitigation, and for global carbon models which do not currently account for changes in soil carbon to depth with management.


Assuntos
Carbono/análise , Pradaria , Solo/química , Mudança Climática , Reino Unido
11.
Phys Chem Chem Phys ; 17(29): 19500-6, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26145988

RESUMO

This work investigates the hydrothermal stability of cobalt doped silica materials with different Co/Si molar ratios (0, 0.05, 0.10, and 0.25). The resultant materials were characterized by N2 sorption and chemical structures by Raman and X-ray absorption spectroscopy before and after a harsh hydrothermal exposure (550 °C, 75 mol% vapour and 40 h). The cobalt silica materials showed a lower surface area loss from 48% to 12% with increasing Co/Si molar ratio from 0.05 to 0.25 and relatively maintaining their pore size distribution, while pure silica exhibited significant surface area reduction (80%) and pore size broadening. For low cobalt loading sample (Co/Si = 0.05), the cobalt was highly dispersed in the silica network in a tetrahedral coordination with oxygen and a small proportion of Co-Co interaction in the second shell. Long range order Co3O4 was observed when Co/Si molar ratio increased to 0.10 and 0.25. The hydrothermal exposure did not affect the local cobalt environments and no cobalt-silicon interaction was observed by X-ray absorption spectroscopy. The hydrothermal stability of the silica matrix was attributed to the physical barrier of cobalt oxide in opposing densification and silica mobility under harsh hydrothermal conditions.

12.
J Chem Phys ; 143(13): 134117, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26450302

RESUMO

We present a new approach to calculate excited states with the full configuration interaction quantum Monte Carlo (FCIQMC) method. The approach uses a Gram-Schmidt procedure, instantaneously applied to the stochastically evolving distributions of walkers, to orthogonalize higher energy states against lower energy ones. It can thus be used to study several of the lowest-energy states of a system within the same symmetry. This additional step is particularly simple and computationally inexpensive, requiring only a small change to the underlying FCIQMC algorithm. No trial wave functions or partitioning of the space is needed. The approach should allow excited states to be studied for systems similar to those accessible to the ground-state method due to a comparable computational cost. As a first application, we consider the carbon dimer in basis sets up to quadruple-zeta quality and compare to existing results where available.


Assuntos
Método de Monte Carlo , Teoria Quântica , Algoritmos
13.
J Chem Phys ; 142(18): 184107, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25978883

RESUMO

We expand upon the recent semi-stochastic adaptation to full configuration interaction quantum Monte Carlo (FCIQMC). We present an alternate method for generating the deterministic space without a priori knowledge of the wave function and present stochastic efficiencies for a variety of both molecular and lattice systems. The algorithmic details of an efficient semi-stochastic implementation are presented, with particular consideration given to the effect that the adaptation has on parallel performance in FCIQMC. We further demonstrate the benefit for calculation of reduced density matrices in FCIQMC through replica sampling, where the semi-stochastic adaptation seems to have even larger efficiency gains. We then combine these ideas to produce explicitly correlated corrected FCIQMC energies for the beryllium dimer, for which stochastic errors on the order of wavenumber accuracy are achievable.

14.
Glob Chang Biol ; 20(2): 566-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24038771

RESUMO

Wet deposition of nitrogen (N) occurs in oxidized (nitrate) and reduced (ammonium) forms. Whether one form drives vegetation change more than the other is widely debated, as field evidence has been lacking. We are manipulating N form in wet deposition to an ombrotrophic bog, Whim (Scottish Borders), and here report nine years of results. Ammonium and nitrate were provided in rainwater spray as NH4 Cl or NaNO3 at 8, 24 or 56 kg N ha(-1)  yr(-1) , plus a rainwater only control, via an automated system coupled to site meteorology. Detrimental N effects were observed in sensitive nonvascular plant species, with higher cumulative N loads leading to more damage at lower annual doses. Cover responses to N addition, both in relation to form and dose, were species specific and mostly dependent on N dose. Some species were generally indifferent to N form and dose, while others were dose sensitive. Calluna vulgaris showed a preference for higher N doses as ammonium N and Hypnum jutlandicum for nitrate N. However, after 9 years, the magnitude of change from wet deposited N on overall species cover is small, indicating only a slow decline in key species. Nitrogen treatment effects on soil N availability were likewise small and rarely correlated with species cover. Ammonium caused most N accumulation and damage to sensitive species at lower N loads, but toxic effects also occurred with nitrate. However, because different species respond differently to N form, setting of ecosystem level critical loads by N form is challenging. We recommend implementing the lowest value of the critical load range where communities include sensitive nonvascular plants and where ammonium dominates wet deposition chemistry. In the context of parallel assessment at the same site, N treatments for wet deposition showed overall much smaller effects than corresponding inputs of dry deposition as ammonia.


Assuntos
Poluentes Atmosféricos/metabolismo , Biodiversidade , Nitrogênio/metabolismo , Solo/química , Áreas Alagadas , Ecossistema , Concentração de Íons de Hidrogênio , Escócia , Estações do Ano
15.
Sci Data ; 11(1): 478, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724554

RESUMO

Soil organic carbon (SOC) is a soil health indicator and understanding dynamics changing SOC stocks will help achieving net zero goals. Here we present four datasets featuring 11,750 data points covering co-located aboveground and below-ground metrics for exploring ecosystem SOC dynamics. Five sites across England with an established land use contrast, grassland and woodland next to each other, were rigorously sampled for aboveground (n = 109), surface (n = 33 soil water release curves), topsoil, and subsoil metrics. Commonly measured soil metrics were analysed in five soil increments for 0-1 metre (n = 4550). Less commonly measured soil metrics which were assumed to change across the soil profile were measured on a subset of samples only (n = 3762). Additionally, we developed a simple method for soil organic matter fractionation using density fractionation which is part of the less common metrics. Finally, soil metrics which may impact SOC dynamics, but with less confidence as to their importance across the soil profile were only measured on topsoil (~5-15 cm = mineral soil) and subsoil (below 50 cm) samples (n = 2567).


Assuntos
Carbono , Pradaria , Solo , Solo/química , Carbono/análise , Inglaterra , Florestas , Ecossistema
17.
PLoS One ; 18(10): e0290843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37792796

RESUMO

A common practice used to restore and maintain biodiversity in grasslands is to stop or decrease the use of fertilizers as they are a major cause of biodiversity loss. This practice is problematic for farmers who need fertilizers to increase forage and meet the nutritional needs of livestock. Evidence is needed that helps identify optimal fertilizer regimes that could benefit biodiversity and livestock production simultaneously over the long-term. Here, we evaluated the impact of different fertilizer regimes on indicators related to both biodiversity (plant, pollinator, leaf miners and parasitoid Shannon-Weiner diversity, bumblebee abundance, nectar productivity and forb species richness), and forage production (ash, crude protein, ruminant metabolizable energy and dry matter). To this end, we used data from a grassland restoration experiment managed under four nutrient inputs schemes for 27 years: farmyard manure (FYM; 72 kg N ha-1 yr-1), artificial nitrogen-phosphorus and potassium (NPK; 25 kg N ha-1 yr-1), FYM + NPK (97 kg N ha-1 yr-1) and no-fertilizer. Results showed strong trade-offs between biodiversity and forage production under all treatments even in applications lower than the critical load in the EU. Overall, farmyard manure was the fertilizer that optimized production and biodiversity while 97 kg N ha-1 yr-1 of fertilizer addition (FYM+NPK) had the most negative impact on biodiversity. Finally, forage from places where no fertilizer has been added for 27 years did not meet the nutritional requirements of cattle, but it did for sheep. Rethinking typical approaches of nutrient addition could lead to land management solutions suitable for biological conservation and agriculture.


Assuntos
Pradaria , Esterco , Bovinos , Animais , Ovinos , Fertilizantes , Agricultura/métodos , Biodiversidade , Nitrogênio/metabolismo , Gado/metabolismo , Fertilização , Solo
18.
Sci Total Environ ; 861: 160660, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36464051

RESUMO

Extreme weather events are increasing in frequency and magnitude with profound effects on ecosystem functioning. Further, there is now a greater likelihood that multiple extreme events are occurring within a single year. Here we investigated the effect of a single drought, flood or compound (flood + drought) extreme event on temperate grassland ecosystem processes in a field experiment. To assess system resistance and resilience, we studied changes in a wide range of above- and below-ground indicators (plant diversity and productivity, greenhouse gas emissions, soil chemical, physical and biological metrics) during the 8 week stress events and then for 2 years post-stress. We hypothesized that agricultural grasslands would have different degrees of resistance and resilience to flood and drought stress. We also investigated two alternative hypotheses that the combined flood + drought treatment would either, (A) promote ecosystem resilience through more rapid recovery of soil moisture conditions or (B) exacerbate the impact of the single flood or drought event. Our results showed that flooding had a much greater effect than drought on ecosystem processes and that the grassland was more resistant and resilient to drought than to flood. The immediate impact of flooding on all indicators was negative, especially for those related to production, and climate and water regulation. Flooding stress caused pronounced and persistent shifts in soil microbial and plant communities with large implications for nutrient cycling and long-term ecosystem function. The compound flood + drought treatment failed to show a more severe impact than the single extreme events. Rather, there was an indication of quicker recovery of soil and microbial parameters suggesting greater resilience in line with hypothesis (A). This study clearly reveals that contrasting extreme weather events differentially affect grassland ecosystem function but that concurrent events of a contrasting nature may promote ecosystem resilience to future stress.


Assuntos
Ecossistema , Clima Extremo , Pradaria , Plantas , Solo/química , Secas
19.
Chemosphere ; 288(Pt 3): 132612, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34678348

RESUMO

Forward osmosis membrane bioreactors (FOMBRs) are currently gaining attention from the wastewater treatment industry, for their potential to produce high effluent quality and a relatively better flux stability against fouling. However, only using physical cleaning methods is not sufficient to recover the water flux performance satisfactorily under a long-term operation. This study comprehensively investigated the efficiency of a hybrid, environmentally-friendly cleaning strategy involving a combination of physical and free nitrous acid (FNA) cleanings under a long-term FOMBR operation. During 92 days of FOMBR operation, physical cleaning recovered the water flux by 85%, whilst FNA cleaning contributed to an additional 5% of the recovery. In addition, FNA cleaning also offered a retardation of fouling deposition by maintaining the water flux 18-30% more than that obtained by only the physical cleaning. A possible mechanism for FNA's role as the cleaning reagent was proposed for the first time in this study based on the water flux performance and membrane autopsy analysis. The results showed FNA cleaning broke down the residual fouling layer, preferencing protein-based substances. A lower ratio of protein to polysaccharides of the residual fouling layer contributed to a more negatively charged membrane surface (- 42.34 ± 0.30 mV) compared to the virgin one (- 17.54 ± 0.81 mV). This resulted in a stronger electrostatic repulsion between the foulants and the membrane surface, and thus slowed down the biofouling deposition process. This study suggested FNA solution has the great potential not only to recover the membrane performance, also as a strategy to slow down fouling deposition.


Assuntos
Incrustação Biológica , Purificação da Água , Incrustação Biológica/prevenção & controle , Reatores Biológicos , Membranas Artificiais , Osmose , Salinidade , Águas Residuárias
20.
Nanoscale ; 14(6): 2221-2229, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35088796

RESUMO

The practical applications of metal-organic frameworks (MOFs) usually require their assembly into mechanically robust structures, usually achieved via coating onto various types of substrates. This paper describes a simple, scalable, and versatile mechanochemical technique for producing MOF nanocrystal coatings on various non-prefunctionalised substrates, including ZrO2, carbon cloth, porous polymer, nickel foam, titanium foil and fluorine-doped tin oxide glass. We revealed the detailed mechanisms that ensure the coating's stability, and identified the coating can facilitate the interfacial energy transfer, which allowed the electrocatalysis application of the MOF coating on conductive substrates. We further demonstrated that coatings can be directly generated in a one-pot fashion by ball milling MOF precursors with substrates.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa