Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
N Engl J Med ; 387(20): 1865-1876, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36322837

RESUMO

BACKGROUND: The BNT162b2 vaccine against coronavirus disease 2019 (Covid-19) has been authorized for use in children 5 to 11 years of age and adolescents 12 to 17 years of age but in different antigen doses. METHODS: We assessed the real-world effectiveness of the BNT162b2 vaccine against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among children and adolescents in Qatar. To compare the incidence of SARS-CoV-2 infection in the national cohort of vaccinated participants with the incidence in the national cohort of unvaccinated participants, we conducted three matched, retrospective, target-trial, cohort studies - one assessing data obtained from children 5 to 11 years of age after the B.1.1.529 (omicron) variant became prevalent and two assessing data from adolescents 12 to 17 years of age before the emergence of the omicron variant (pre-omicron study) and after the omicron variant became prevalent. Associations were estimated with the use of Cox proportional-hazards regression models. RESULTS: Among children, the overall effectiveness of the 10-µg primary vaccine series against infection with the omicron variant was 25.7% (95% confidence interval [CI], 10.0 to 38.6). Effectiveness was highest (49.6%; 95% CI, 28.5 to 64.5) right after receipt of the second dose but waned rapidly thereafter and was negligible after 3 months. Effectiveness was 46.3% (95% CI, 21.5 to 63.3) among children 5 to 7 years of age and 16.6% (95% CI, -4.2 to 33.2) among those 8 to 11 years of age. Among adolescents, the overall effectiveness of the 30-µg primary vaccine series against infection with the omicron variant was 30.6% (95% CI, 26.9 to 34.1), but many adolescents had been vaccinated months earlier. Effectiveness waned over time since receipt of the second dose. Effectiveness was 35.6% (95% CI, 31.2 to 39.6) among adolescents 12 to 14 years of age and 20.9% (95% CI, 13.8 to 27.4) among those 15 to 17 years of age. In the pre-omicron study, the overall effectiveness of the 30-µg primary vaccine series against SARS-CoV-2 infection among adolescents was 87.6% (95% CI, 84.0 to 90.4) and waned relatively slowly after receipt of the second dose. CONCLUSIONS: Vaccination in children was associated with modest, rapidly waning protection against omicron infection. Vaccination in adolescents was associated with stronger, more durable protection, perhaps because of the larger antigen dose. (Funded by Weill Cornell Medicine-Qatar and others.).


Assuntos
Vacina BNT162 , COVID-19 , Eficácia de Vacinas , Adolescente , Criança , Humanos , Vacina BNT162/administração & dosagem , Vacina BNT162/uso terapêutico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/uso terapêutico , Catar/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Pré-Escolar , Eficácia de Vacinas/estatística & dados numéricos
2.
N Engl J Med ; 387(1): 21-34, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35704396

RESUMO

BACKGROUND: The protection conferred by natural immunity, vaccination, and both against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with the BA.1 or BA.2 sublineages of the omicron (B.1.1.529) variant is unclear. METHODS: We conducted a national, matched, test-negative, case-control study in Qatar from December 23, 2021, through February 21, 2022, to evaluate the effectiveness of vaccination with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna), natural immunity due to previous infection with variants other than omicron, and hybrid immunity (previous infection and vaccination) against symptomatic omicron infection and against severe, critical, or fatal coronavirus disease 2019 (Covid-19). RESULTS: The effectiveness of previous infection alone against symptomatic BA.2 infection was 46.1% (95% confidence interval [CI], 39.5 to 51.9). The effectiveness of vaccination with two doses of BNT162b2 and no previous infection was negligible (-1.1%; 95% CI, -7.1 to 4.6), but nearly all persons had received their second dose more than 6 months earlier. The effectiveness of three doses of BNT162b2 and no previous infection was 52.2% (95% CI, 48.1 to 55.9). The effectiveness of previous infection and two doses of BNT162b2 was 55.1% (95% CI, 50.9 to 58.9), and the effectiveness of previous infection and three doses of BNT162b2 was 77.3% (95% CI, 72.4 to 81.4). Previous infection alone, BNT162b2 vaccination alone, and hybrid immunity all showed strong effectiveness (>70%) against severe, critical, or fatal Covid-19 due to BA.2 infection. Similar results were observed in analyses of effectiveness against BA.1 infection and of vaccination with mRNA-1273. CONCLUSIONS: No discernable differences in protection against symptomatic BA.1 and BA.2 infection were seen with previous infection, vaccination, and hybrid immunity. Vaccination enhanced protection among persons who had had a previous infection. Hybrid immunity resulting from previous infection and recent booster vaccination conferred the strongest protection. (Funded by Weill Cornell Medicine-Qatar and others.).


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV , Vacina BNT162 , COVID-19 , Imunidade Inata , Imunização , SARS-CoV-2 , Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacina de mRNA-1273 contra 2019-nCoV/uso terapêutico , Vacina BNT162/imunologia , Vacina BNT162/uso terapêutico , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Estudos de Casos e Controles , Humanos , Imunidade Inata/imunologia , Imunização Secundária , Recidiva , SARS-CoV-2/imunologia , Vacinação
3.
N Engl J Med ; 386(19): 1804-1816, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35263534

RESUMO

BACKGROUND: Waning of vaccine protection against coronavirus disease 2019 (Covid-19) and the emergence of the omicron (or B.1.1.529) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have led to expedited efforts to scale up booster vaccination. Protection conferred by booster doses of the BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines in Qatar, as compared with protection conferred by the two-dose primary series, is unclear. METHODS: We conducted two matched retrospective cohort studies to assess the effectiveness of booster vaccination, as compared with that of a two-dose primary series alone, against symptomatic SARS-CoV-2 infection and Covid-19-related hospitalization and death during a large wave of omicron infections from December 19, 2021, through January 26, 2022. The association of booster status with infection was estimated with the use of Cox proportional-hazards regression models. RESULTS: In a population of 2,239,193 persons who had received at least two doses of BNT162b2 or mRNA-1273 vaccine, those who had also received a booster were matched with persons who had not received a booster. Among the BNT162b2-vaccinated persons, the cumulative incidence of symptomatic omicron infection was 2.4% (95% confidence interval [CI], 2.3 to 2.5) in the booster cohort and 4.5% (95% CI, 4.3 to 4.6) in the nonbooster cohort after 35 days of follow-up. Booster effectiveness against symptomatic omicron infection, as compared with that of the primary series, was 49.4% (95% CI, 47.1 to 51.6). Booster effectiveness against Covid-19-related hospitalization and death due to omicron infection, as compared with the primary series, was 76.5% (95% CI, 55.9 to 87.5). BNT162b2 booster effectiveness against symptomatic infection with the delta (or B.1.617.2) variant, as compared with the primary series, was 86.1% (95% CI, 67.3 to 94.1). Among the mRNA-1273-vaccinated persons, the cumulative incidence of symptomatic omicron infection was 1.0% (95% CI, 0.9 to 1.2) in the booster cohort and 1.9% (95% CI, 1.8 to 2.1) in the nonbooster cohort after 35 days; booster effectiveness against symptomatic omicron infection, as compared with the primary series, was 47.3% (95% CI, 40.7 to 53.3). Few severe Covid-19 cases were noted in the mRNA-1273-vaccinated cohorts. CONCLUSIONS: The messenger RNA (mRNA) boosters were highly effective against symptomatic delta infection, but they were less effective against symptomatic omicron infection. However, with both variants, mRNA boosters led to strong protection against Covid-19-related hospitalization and death. (Funded by Weill Cornell Medicine-Qatar and others.).


Assuntos
Vacina de mRNA-1273 contra 2019-nCoV/imunologia , Vacina BNT162/imunologia , COVID-19 , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Estudos de Coortes , Humanos , Imunização Secundária , Imunogenicidade da Vacina , Catar/epidemiologia , RNA Mensageiro , Estudos Retrospectivos , SARS-CoV-2 , Eficácia de Vacinas , Vacinas Sintéticas , Vacinas de mRNA
4.
J Med Virol ; 96(5): e29628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38682568

RESUMO

This study evaluated the potential for antibody-dependent enhancement (ADE) in serum samples from patients exposed to Middle East respiratory syndrome coronavirus (MERS-CoV). Furthermore, we evaluated the effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination on ADE in individuals with a MERS infection history. We performed ADE assay in sera from MERS recovered and SARS-CoV-2-vaccinated individuals using BHK cells expressing FcgRIIa, SARS-CoV-2, and MERS-CoV pseudoviruses (PVs). Further, we analyzed the association of ADE to serum IgG levels and neutralization. Out of 16 MERS patients, nine demonstrated ADE against SARS-CoV-2 PV, however, none of the samples demonstrated ADE against MERS-CoV PV. Furthermore, out of the seven patients exposed to SARS-CoV-2 vaccination after MERS-CoV infection, only one patient (acutely infected with MERS-CoV) showed ADE for SARS-CoV-2 PV. Further analysis indicated that IgG1, IgG2, and IgG3 against SARS-CoV-2 S1 and RBD subunits, IgG1 and IgG2 against the MERS-CoV S1 subunit, and serum neutralizing activity were low in ADE-positive samples. In summary, samples from MERS-CoV-infected patients exhibited ADE against SARS-CoV-2 and was significantly associated with low levels of neutralizing antibodies. Subsequent exposure to SARS-CoV-2 vaccination resulted in diminished ADE activity while the PV neutralization assay demonstrated a broadly reactive antibody response in some patient samples.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Facilitadores , COVID-19 , Imunoglobulina G , Coronavírus da Síndrome Respiratória do Oriente Médio , SARS-CoV-2 , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Anticorpos Antivirais/sangue , SARS-CoV-2/imunologia , Imunoglobulina G/sangue , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Pessoa de Meia-Idade , Masculino , Feminino , Testes de Neutralização , Adulto , Vacinas contra COVID-19/imunologia , Antígenos Virais/imunologia , Animais , Idoso , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação
5.
J Med Virol ; 96(3): e29527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511514

RESUMO

Neutralizing antibodies (NAbs) are elicited after infection and vaccination and have been well studied. However, their antibody-dependent cellular cytotoxicity (ADCC) functionality is still poorly characterized. Here, we investigated ADCC activity in convalescent sera from infected patients with wild-type (WT) severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or omicron variant compared with three coronavirus disease 2019 (COVID-19) vaccine platforms and postvaccination breakthrough infection (BTI). We analyzed ADCC activity targeting SARS-CoV-2 spike (S) and nucleocapsid (N) proteins in convalescent sera following WT SARS-CoV-2-infection (n = 91), including symptomatic and asymptomatic infections, omicron-infection (n = 8), COVID-19 vaccination with messenger RNA- (mRNA)- (BNT162b2 or mRNA-1273, n = 77), adenovirus vector- (n = 41), and inactivated virus- (n = 46) based vaccines, as well as post-mRNA vaccination BTI caused by omicron (n = 28). Correlations between ADCC, binding, and NAb titers were reported. ADCC was elicited within the first month postinfection and -vaccination and remained detectable for ≥3 months. WT-infected symptomatic patients had higher S-specific ADCC levels than asymptomatic and vaccinated individuals. Also, no difference in N-specific ADCC activity was seen between symptomatic and asymptomatic patients, but the levels were higher than the inactivated vaccine. Notably, omicron infection showed reduced overall ADCC activity compared to WT SARS-CoV-2 infection. Although post-mRNA vaccination BTI elicited high levels of binding and NAbs, ADCC activity was significantly reduced. Also, there was no difference in ADCC levels across the four vaccines, although NAbs and binding antibody titers were significantly higher in mRNA-vaccinated individuals. All evaluated vaccine platforms are inferior in inducing ADCC compared to natural infection with WT SARS-CoV-2. The inactivated virus-based vaccine can induce N-specific ADCC activity, but its relevance to clinical outcomes requires further investigation. Our data suggest that ADCC could be used to estimate the extra-neutralization level against COVID-19 and provides evidence that vaccination should focus on other Fc-effector functions besides NAbs. Also, the decreased susceptibility of the omicron variant to ADCC offers valuable guidance for forthcoming efforts to identify the specific targets of antibodies facilitating ADCC.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacina BNT162 , SARS-CoV-2 , Soroterapia para COVID-19 , Anticorpos Neutralizantes , Citotoxicidade Celular Dependente de Anticorpos , Anticorpos Antivirais , Vacinação
6.
Pediatr Res ; 94(2): 477-485, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36658331

RESUMO

BACKGROUND: We characterized and identified the genetic and antigenic variations of circulating rotavirus strains in comparison to used rotavirus vaccines. METHODS: Rotavirus-positive samples (n = 231) were collected and analyzed. The VP7 and VP4 genes were sequenced and analyzed against the rotavirus vaccine strains. Antigenic variations were illustrated on the three-dimensional models of surface proteins. RESULTS: In all, 59.7% of the hospitalized children were vaccinated, of which only 57.2% received two doses. There were no significant differences between the vaccinated and non-vaccinated groups in terms of clinical outcome. The G3 was the dominant genotype (40%) regardless of vaccination status. Several amino acid changes were identified in the VP7 and VP4 antigenic epitopes compared to the licensed vaccines. The highest variability was seen in the G3 (6 substitutions) and P[4] (11 substitutions) genotypes in comparison to RotaTeq®. In comparison to Rotarix®, G1 strains possessed three amino acid changes in 7-1a and 7-2 epitopes while P[8] strains possessed five amino acid changes in 8-1 and 8-3 epitopes. CONCLUSIONS: The current use of Rotarix® vaccine might not be effective in preventing the infection due to the higher numbers of G3-associated cases. The wide range of mutations in the antigenic epitopes compared to vaccine strains may compromise the vaccine's effectiveness. IMPACT: The reduced rotavirus vaccine effectiveness necessitate regular evaluation of the vaccine content to ensure optimal protection. We characterized and identified the genetic and antigenic variations of circulating rotavirus strains in comparison to the Rotarix vaccine strain that is used in Qatar. The study highlight the importance for regular monitoring of emerging rotavirus variants and their impact on vaccine effectiveness in young children.


Assuntos
Infecções por Rotavirus , Rotavirus , Humanos , Criança , Lactente , Pré-Escolar , Rotavirus/genética , Infecções por Rotavirus/epidemiologia , Infecções por Rotavirus/prevenção & controle , Catar , Antígenos Virais/genética , Antígenos Virais/química , Proteínas do Capsídeo/genética , Genótipo , Epitopos/genética
7.
Clin Infect Dis ; 75(1): e361-e367, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35404391

RESUMO

SHORT SUMMARY: Severe acute respiratory syndrome coronavirus 2 infection from the Omicron variant in children/adolescents is less severe than infection from the Delta variant. Those 6 to <18 years also have less severe disease than those <6 years old. BACKGROUND: There are limited data assessing coronavirus 2019 (COVID-19) disease severity in children/adolescents infected with the Omicron variant. METHODS: We identified children and adolescents <18 years of age with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with Delta and propensity score-matched controls with Omicron variant infection from the National COVID-19 Database in Qatar. Primary outcome was disease severity, determined by hospital admission, admission to the intensive care unit (ICU), or mechanical ventilation within 14 days of diagnosis, or death within 28 days. RESULTS: Among 1735 cases with Delta variant infection between 1 June and 6 November 2021, and 32 635 cases with Omicron variant infection between 1 January and 15 January 2022, who did not have prior infection and were not vaccinated, we identified 985 propensity score-matched pairs. Among those who were Delta infected, 84.2% had mild, 15.7% had moderate, and 0.1% had severe/critical disease. Among those who were Omicron infected, 97.8% had mild, 2.2% had moderate, and none had severe/critical disease (P < .001). Omicron variant infection (vs Delta) was associated with significantly lower odds of moderate or severe/critical disease (adjusted odds ratio [AOR], 0.12; 95% confidence interval [CI], .07-.18). Those aged 6-11 and 12 to <18 years had lower odds of developing moderate or severe/critical disease compared with those younger than age 6 years (aOR, 0.47; 95% CI, .33-.66 for 6-11 year olds; aOR, 0.45; 95% CI, .21-.94 for 12 to <18 year olds). CONCLUSIONS: Omicron variant infection in children/adolescents is associated with less severe disease than Delta variant infection as measured by hospitalization rates and need for ICU care or mechanical ventilation. Those 6 to <18 years of age also have less severe disease than those <6 years old.


Assuntos
COVID-19 , Adolescente , Criança , Humanos , Respiração Artificial , SARS-CoV-2 , Índice de Gravidade de Doença
9.
Arch Virol ; 166(2): 335-345, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33392820

RESUMO

Meningitis is a serious condition that affects the central nervous system. It is an inflammation of the meninges, which is the membrane that surrounds both the brain and the spinal cord. Meningitis can be caused by bacterial, viral, or fungal infections. Many viruses, such as enteroviruses, herpesviruses, and influenza viruses, can cause this neurological disorder. However, enteroviruses have been found to be the underlying cause of most viral meningitis cases worldwide. With few exceptions, the clinical manifestations and symptoms associated with viral meningitis are similar for the different causative agents, which makes it difficult to diagnose the disease at early stages. The pathogenesis of viral meningitis is not clearly defined, and more studies are needed to improve the health care of patients in terms of early diagnosis and management. This review article discusses the most common causative agents, epidemiology, clinical features, diagnosis, and pathogenesis of viral meningitis.


Assuntos
Meningite Viral/diagnóstico , Meningite Viral/virologia , Animais , Humanos , Vírus/patogenicidade
12.
Cancer Cell Int ; 20: 107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265596

RESUMO

BACKGROUND: Infections by both human oncoviruses, human Papillomaviruses (HPV) and Epstein-Barr virus (EBV) are very common in the adult human population and are associated with various malignancies. While HPV is generally transmitted sexually or via skin-to-skin contact, EBV is frequently transmitted by oral secretions, blood transfusions and organ transplants. This study aims to determine the prevalence and circulating genotypes of HPV and EBV in healthy blood donors in Qatar. METHODS: We explored the co-prevalence of high-risk HPVs and EBV in 378 males and only 7 females blood donors of different nationalities (mainly from Qatar, Egypt, Syria, Jordan, Pakistan, and India) residing in Qatar, using polymerase chain reaction (PCR). DNA was extracted from the buffy coat and genotyping was performed using PCR and nested-PCR targeting E6 and E7 as well as LMP-1 of HPV and EBV, respectively. RESULTS: We found that from the total number of 385 cases of healthy blood donors studied, 54.8% and 61% of the samples are HPVs and EBV positive, respectively. Additionally, our data revealed that the co-presence of both high-risk HPVs and EBV is 40.4% of the total samples. More significantly, this study pointed out for the first time that the most frequent high-risk HPV types in Qatar are 59 (54.8%), 31 (53.7%), 52 (49.1%), 51 (48.6%), 58 (47%) and 35 (45.5%), while the most commonly expressed low-risk HPV types are 53 (50.6%), 11 (45.5), 73 (41.7%) and 6 (41.3%), with all the cases showing multiple HPVs infection. CONCLUSION: In this study, we demonstrated for the first time that HPV and EBV are commonly co-present in healthy blood donors in Qatar. On the other hand, it is important to highlight that these oncoviruses can also be co-present in several types of human cancers where they can cooperate in the initiation and/or progression of these cancers. Therefore, more studies regarding the co-presence of these oncoviruses and their interaction are necessary to understand their cooperative role in human diseases.

14.
iScience ; 26(9): 107586, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37664632

RESUMO

Hepatitis E viral (HEV) infection imposes a heavy global health burden. The variability in the prevalence of serological markers of HEV infection between different ethnic groups proposes a host genetic influence. Here, we report genetic polymorphisms associated with anti-HEV antibody positivity and level using binary- and quantitative-trait genome-wide association studies (GWAS) on a population from Qatar (n = 5829). We identified a region in 12p11.1 (lead SNP: rs559856097, allele: A, p = 2.3 × 10-10) significantly associated with anti-HEV antibodies level. This intergenic variant is located near SNORD112, a small nucleolar RNA (snoRNA). Additional gene-set and pathway enrichment analyses highlighted a strong correlation with anti-viral response-related pathways, including IFNs (alpha/beta) and interleukin-21 (IL-21) signaling. This is the first GWAS on the response to HEV infection. Further replication and functional experimentation are warranted to validate these findings.

15.
JAMA Netw Open ; 6(6): e2319222, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389876

RESUMO

Importance: In the ongoing COVID-19 pandemic, there remain unanswered questions regarding the nature and importance of the humoral immune response against other coronaviruses. Although coinfection of the Middle East respiratory syndrome coronavirus (MERS-CoV) with the SARS-CoV-2 has not been documented yet, several patients previously infected with MERS-CoV received the COVID-19 vaccine; data describing how preexisting MERS-CoV immunity may shape the response to SARS-CoV-2 following infection or vaccination are lacking. Objective: To characterize the cross-reactive and protective humoral responses in patients exposed to both MERS-CoV infection and SARS-CoV-2 vaccination. Design, Setting, and Participants: This cohort study involved a total of 18 sera samples collected from 14 patients with MERS-CoV infection before (n = 12) and after (n = 6) vaccination with 2 doses of COVID-19 mRNA vaccine (BNT162b2 or mRNA-1273). Of those patients, 4 had prevaccination and postvaccination samples. Antibody responses to SARS-CoV-2 and MERS-CoV were assessed as well as cross-reactive responses to other human coronaviruses. Main Outcomes and Measures: The main outcomes measured were binding antibody responses, neutralizing antibodies, and antibody-dependent cellular cytotoxicity (ADCC) activity. Binding antibodies targeting SARS-CoV-2 main antigens (spike [S], nucleocapsid, and receptor-binding domain) were detected using automated immunoassays. Cross-reactive antibodies with the S1 protein of SARS-CoV, MERS-CoV, and common human coronaviruses were analyzed using a bead-based assay. Neutralizing antibodies (NAbs) against MERS-CoV and SARS-CoV-2 as well as ADCC activity against SARS-CoV-2 were assessed. Results: A total of 18 samples were collected from 14 male patients with MERS-CoV infection (mean [SD] age, 43.8 [14.6] years). Median (IQR) duration between primary COVID-19 vaccination and sample collection was 146 (47-189) days. Prevaccination samples had high levels of anti-MERS S1 immunoglobin M (IgM) and IgG (reactivity index ranging from 0.80 to 54.7 for IgM and from 0.85 to 176.3 for IgG). Cross-reactive antibodies with SARS-CoV and SARS-CoV-2 were also detected in these samples. However, cross-reactivity against other coronaviruses was not detected by the microarray assay. Postvaccination samples showed significantly higher levels of total antibodies, IgG, and IgA targeting SARS-CoV-2 S protein compared with prevaccination samples (eg, mean total antibodies: 8955.0 AU/mL; 95% CI, -5025.0 to 22936.0 arbitrary units/mL; P = .002). In addition, significantly higher anti-SARS S1 IgG levels were detected following vaccination (mean reactivity index, 55.4; 95% CI, -9.1 to 120.0; P = .001), suggesting potential cross-reactivity with these coronaviruses. Also, anti-S NAbs were significantly boosted against SARS-CoV-2 (50.5% neutralization; 95% CI, 17.6% to 83.2% neutralization; P < .001) after vaccination. Furthermore, there was no significant increase in antibody-dependent cellular cytotoxicity against SARS-CoV-2 S protein postvaccination. Conclusions and Relevance: This cohort study found a significant boost in cross-reactive NAbs in some patients exposed to MERS-CoV and SARS-CoV-2 antigens. These findings suggest that isolation of broadly reactive antibodies from these patients may help guide the development of a pancoronavirus vaccine by targeting cross-reactive epitopes between distinct strains of human coronaviruses.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Humanos , Masculino , Adulto , Vacinas contra COVID-19 , SARS-CoV-2 , Vacina BNT162 , Estudos de Coortes , Pandemias , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Imunoglobulina G , Imunoglobulina M
16.
Front Immunol ; 14: 1061255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817441

RESUMO

Introduction: The BNT162b2 mRNA-based vaccine has shown high efficacy in preventing COVID-19 infection but there are limited data on the types and persistence of the humoral and T cell responses to such a vaccine. Methods: Here, we dissect the vaccine-induced humoral and cellular responses in a cohort of six healthy recipients of two doses of this vaccine. Results and discussion: Overall, there was heterogeneity in the spike-specific humoral and cellular responses among vaccinated individuals. Interestingly, we demonstrated that anti-spike antibody levels detected by a novel simple automated assay (Jess) were strongly correlated (r=0.863, P<0.0001) with neutralizing activity; thus, providing a potential surrogate for neutralizing cell-based assays. The spike-specific T cell response was measured with a newly modified T-spot assay in which the high-homology peptide-sequences cross-reactive with other coronaviruses were removed. This response was induced in 4/6 participants after the first dose, and all six participants after the second dose, and remained detectable in 4/6 participants five months post-vaccination. We have also shown for the first time, that BNT162b2 vaccine enhanced T cell responses also against known human common viruses. In addition, we demonstrated the efficacy of a rapid ex-vivo T cell expansion protocol for spike-specific T cell expansion to be potentially used for adoptive-cell therapy in severe COVID-19, immunocompromised individuals, and other high-risk groups. There was a 9 to 13.7-fold increase in the number of expanded T cells with a significant increase of anti-spike specific response showing higher frequencies of both activation and cytotoxic markers. Interestingly, effector memory T cells were dominant in all four participants' CD8+ expanded memory T cells; CD4+ T cells were dominated by effector memory in 2/4 participants and by central memory in the remaining two participants. Moreover, we found that high frequencies of CD4+ terminally differentiated memory T cells were associated with a greater reduction of spike-specific activated CD4+ T cells. Finally, we showed that participants who had a CD4+ central memory T cell dominance expressed a high CD69 activation marker in the CD4+ activated T cells.


Assuntos
COVID-19 , Imunoterapia Adotiva , Humanos , Vacina BNT162 , Linfócitos T CD4-Positivos , Projetos Piloto , Linfócitos T/imunologia , Memória Imunológica
17.
Int J Infect Dis ; 124: 35-37, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36075373

RESUMO

The diversity of zoonotic influenza viruses and their ability to cross the species barrier has always been alarming and requires continuous surveillance in both human and animal populations. Avian A(H3N8) influenza viruses are frequently detected in animals and represent one of the most common subtypes in wild birds. Cross-species transmission of avian A(H3N8) influenza viruses has been reported for multiple mammalian hosts, including the outbreaks in horses and dogs by the equine and canine lineages of A(H3N8), respectively. In humans, there was no evidence of influenza A(H3N8) infection until 25 April 2022, when the Chinese health authority reported the first-ever human H3N8 case in a 4-year-old boy from Henan province. Although there is no information that this virus can sustain human transmission, additional epidemiological and virological studies are needed to better assess the replication potency of the virus in human cells as well as the risk posed to public health. In this study, we briefly discuss the influenza A(H3N8) interspecies transmission of the virus, with emphasis on human transmission.


Assuntos
Vírus da Influenza A Subtipo H3N8 , Influenza Humana , Infecções por Orthomyxoviridae , Masculino , Animais , Cães , Cavalos , Humanos , Pré-Escolar , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Saúde Pública , Mamíferos
18.
Front Med (Lausanne) ; 9: 802312, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360730

RESUMO

Recent progress in genomics and bioinformatics technologies have allowed for the emergence of immunogenomics field. This intersection of immunology and genetics has broadened our understanding of how the immune system responds to infection and vaccination. While the immunogenetic basis of the huge clinical variability in response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently being extensively studied, the host genetic determinants of SARS-CoV-2 vaccines remain largely unknown. Previous reports evidenced that vaccines may not protect all populations or individuals equally, due to multiple host- and vaccine-specific factors. Several studies on vaccine response to measles, rubella, hepatitis B, smallpox, and influenza highlighted the contribution of genetic mutations or polymorphisms in modulating the innate and adaptive immunity following vaccination. Specifically, genetic variants in genes encoding virus receptors, antigen presentation, cytokine production, or related to immune cells activation and differentiation could influence how an individual responds to vaccination. Although such knowledge could be utilized to generate personalized vaccine strategies to optimize the vaccine response, studies in this filed are still scarce. Here, we briefly summarize the scientific literature related to the immunogenetic determinants of vaccine-induced immunity, highlighting the possible role of host genetics in response to SARS-CoV-2 vaccines as well.

19.
Mol Immunol ; 152: 172-182, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36371813

RESUMO

Antibody-dependent enhancement (ADE) has been associated with severe disease outcomes in several viral infections, including respiratory infections. In vitro and in vivo studies showed that antibody-response to SARS-CoV and MERS-CoV could exacerbate infection via ADE. Recently in SARS CoV-2, the in vitro studies and structural analysis shows a risk of disease severity via ADE. This phenomenon is partially attributed to non-neutralizing antibodies or antibodies at sub-neutralizing levels. These antibodies result in antigen-antibody complexes' deposition and propagation of a chronic inflammatory process that destroys affected tissues. Further, antigen-antibody complexes may enhance the internalization of the virus into cells through the Fc gamma receptor (FcγR) and lead to further virus replication. Thus, ADE occur via two mechanisms; 1. Antibody mediated replication and 2. Enhanced immune activation. Antibody-mediated effector functions are mainly driven by complement activation, and the first complement in the cascade is complement 1q (C1q) which binds to the virus-antibody complex. Reports say that deficiency in circulating plasma levels of C1q, an independent predictor of mortality in high-risk patients, including diabetes, is associated with severe viral infections. Complement mediated ADE is reported in several viral infections such as dengue, West Nile virus, measles, RSV, Human immunodeficiency virus (HIV), and Ebola virus. This review discusses ADE in viral infections and the in vitro evidence of ADE in coronaviruses. We outline the mechanisms of ADE, emphasizing the role of complements, especially C1q in the outcome of the enhanced disease.


Assuntos
COVID-19 , Síndrome Respiratória Aguda Grave , Humanos , Anticorpos Facilitadores , Complemento C1q , Complexo Antígeno-Anticorpo , Anticorpos Antivirais
20.
Vet Res Commun ; 46(2): 487-498, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35083655

RESUMO

Rodents are sources of many zoonotic pathogens that are of public health concern. This study investigated bacterial pathogens and assessed their antimicrobial resistance (AMR) patterns in commensal rodents in Qatar. A total of 148 rodents were captured between August 2019 and February 2020, and blood, ectoparasites, and visceral samples were collected. Gram-negative bacteria were isolated from the intestines, and blood plasma samples were used to detect antibodies against Brucella spp., Chlamydophila abortus, and Coxiella burnetii. PCR assays were performed to detect C. burnetii, Leptospira spp., Rickettsia spp., and Yersinia pestis in rodent tissues and ectoparasite samples. Antimicrobial resistance by the isolated intestinal bacteria was performed using an automated VITEK analyzer. A total of 13 bacterial species were isolated from the intestine samples, namely Acinetobacter baumannii, Aeromonas salmonicida, Citrobacter freundii, Citrobacter koseri, Enterobacter aerogenes, Enterobacter cloacae, Escherichia coli, Hafnia alvei, Klebsiella pneumoniae, Providencia stuartii, Proteus mirabilis, Pseudomonas aeruginosa, and Salmonella enterica. The majority of them were E. coli (54.63%), followed by P. mirabilis (17.59%) and K. pneumoniae (8.33%). Most of the pathogens were isolated from rodents obtained from livestock farms (50.46%), followed by agricultural farms (26.61%) and other sources (22.94%). No antibodies (0/148) were detected against Brucella spp., C. abortus, or C. burnetii. In addition, 31.58% (6/19) of the flea pools and one (1/1) mite pool was positive for Rickettsia spp., and no sample was positive for C. burnetii, Leptospira spp., and Y. pestis by PCR. A total of 43 (38%) bacterial isolates were identified as multidrug resistant (MDR), whereas A. salmonicida (n = 1) did not show resistance to any tested antimicrobials. Over 50% of bacterial MDR isolates were resistant to ampicillin, cefalotin, doxycycline, nitrofurantoin, and tetracycline. The presence of MDR pathogens was not correlated with rodent species or the location of rodent trapping. Seven (11.86%) E. coli and 2 (22.2%) K. pneumoniae were extended-spectrum beta-lactamases (ESBL) producers. These findings suggest that rodents can be a source of opportunistic bacteria for human and animal transmission in Qatar. Further studies are needed for the molecular characterization of the identified bacteria in this study.


Assuntos
Antibacterianos , Escherichia coli , Animais , Antibacterianos/farmacologia , Bactérias , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana/veterinária , Catar/epidemiologia , Roedores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa