Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 26(4): 1804-17, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26838771

RESUMO

Nogo receptor 1 (NgR1) is expressed in forebrain neurons and mediates nerve growth inhibition in response to Nogo and other ligands. Neuronal activity downregulates NgR1 and the inability to downregulate NgR1 impairs long-term memory. We investigated behavior in a serial behavioral paradigm in mice that overexpress or lack NgR1, finding impaired locomotor behavior and recognition memory in mice lacking NgR1 and impaired sequential spatial learning in NgR1 overexpressing mice. We also investigated a role for NgR1 in drug-mediated sensitization and found that repeated cocaine exposure caused stronger locomotor responses but limited development of stereotypies in NgR1 overexpressing mice. This suggests that NgR1-regulated synaptic plasticity is needed to develop stereotypies. Ex vivo magnetic resonance imaging and diffusion tensor imaging analyses of NgR1 overexpressing brains did not reveal any major alterations. NgR1 overexpression resulted in significantly reduced density of mature spines and dendritic complexity. NgR1 overexpression also altered cocaine-induced effects on spine plasticity. Our results show that NgR1 is a negative regulator of both structural synaptic plasticity and dendritic complexity in a brain region-specific manner, and highlight anterior cingulate cortex as a key area for memory-related plasticity.


Assuntos
Encéfalo/metabolismo , Dendritos/fisiologia , Locomoção , Plasticidade Neuronal , Receptor Nogo 1/metabolismo , Reconhecimento Psicológico/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Cocaína/administração & dosagem , Dendritos/efeitos dos fármacos , Imagem de Tensor de Difusão , Feminino , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/metabolismo , Locomoção/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Plasticidade Neuronal/efeitos dos fármacos , Receptor Nogo 1/genética , Teste de Desempenho do Rota-Rod
2.
Brain Sci ; 14(4)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38672000

RESUMO

BACKGROUND: Cluster headache (CH) is a debilitating condition, but current therapies leave CH patients in pain. The extent of this problem in Sweden is unknown. METHODS: An anonymized questionnaire was sent to 479 Swedish CH patients to investigate patterns and perceived effects of treatments. RESULTS: Three hundred fourteen answers were analyzed. The population was representative regarding age of onset and sex. Less than half (46%) were satisfied with their abortive treatments, 19% terminated functioning abortive treatments due to side effects. Additionally, 17% of chronic CH patients had not tried the first-line preventive drug verapamil. A small subset had tried illicit substances to treat their CH (0-8% depending on substance). Notably, psilocybin was reported effective as an abortive treatment by 100% (n = 8), and with some level of effect as a preventive treatment by 92% (n = 12). For verapamil, some level of preventive effect was reported among 68% (n = 85). CONCLUSIONS: Our descriptive data illustrate that many Swedish CH patients are undertreated, lack functional therapies, and experience side effects. Further studies are warranted to search for new treatment strategies as well as a revision of current treatment guidelines with the aim of reducing patient disease burden to the greatest extent possible.

3.
Brain Sci ; 10(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861860

RESUMO

Migraine is the sixth most prevalent disease in the world and a substantial number of experiments have been conducted to analyze potential differences between the migraine brain and the healthy brain. Results from these investigations point to the possibility that development and aggravation of migraine may include grey matter plasticity. Nogo-type signaling is a potent plasticity regulating system in the CNS and consists of ligands, receptors, co-receptors and modulators with a dynamic age- and activity-related expression in cortical and subcortical regions. Here we investigated a potential link between migraine and five key Nogo-type signaling genes: RTN4, OMGP, MAG, RTN4R and LINGO1, by screening 15 single nucleotide polymorphisms (SNPs) within these genes. In a large Swedish migraine cohort (749 migraine patients and 4032 controls), using a logistic regression with sex as covariate, we found that there was no such association. In addition, a haplotype analysis was performed which revealed three haplotype blocks. These blocks had no significant association with migraine. However, to robustly conclude that Nogo-type genotypes signaling do not influence the prevalence of migraine, further studies are encouraged.

5.
Front Mol Neurosci ; 11: 42, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520216

RESUMO

An appropriate strength of Nogo-like signaling is important to maintain synaptic homeostasis in the CNS. Disturbances have been associated with schizophrenia, MS and other diseases. Blocking Nogo-like signaling may improve recovery after spinal cord injury, stroke and traumatic brain injury. To understand the interacting roles of an increasing number of ligands, receptors and modulators engaged in Nogo-like signaling, the transcriptional activity of these genes in the same brain areas from birth to old age in the normal brain is needed. Thus, we have quantitatively mapped the innate expression of 11 important genes engaged in Nogo-like signaling. Using in situ hybridization, we located and measured the amount of mRNA encoding Nogo-A, OMgp, NgR1, NgR2, NgR3, Lingo-1, Troy, Olfactomedin, LgI1, ADAM22, and MAG, in 18 different brain areas at six different ages (P0, 1, 2, 4, 14, and 104 weeks). We show gene- and area-specific activities and how the genes undergo dynamic regulation during postnatal development and become stable during adulthood. Hippocampal areas underwent the largest changes over time. We only found differences between individual cortical areas in Troy and MAG. Subcortical areas presented the largest inter-regional differences; lateral and basolateral amygdala had markedly higher expression than other subcortical areas. The widespread differences and unique expression patterns of the different genes involved in Nogo-like signaling suggest that the functional complexes could look vastly different in different areas.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa