Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
mBio ; 15(4): e0338323, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38415646

RESUMO

We previously demonstrated that mutation of sarA in Staphylococcus aureus limits biofilm formation, cytotoxicity for osteoblasts and osteoclasts, and virulence in osteomyelitis, and that all of these phenotypes can be attributed to the increased production of extracellular proteases. Here we extend these studies to assess the individual importance of these proteases alone and in combination with each other using the methicillin-resistant USA300 strain LAC, the methicillin-susceptible USA200 strain UAMS-1, and isogenic sarA mutants that were also unable to produce aureolysin (Aur), staphopain A (ScpA), staphylococcal serine protease A (subsp.), staphopain B (SspB), and the staphylococcal serine protease-like proteins A-F (SplA-F). Biofilm formation was restored in LAC and UAMS-1 sarA mutants by subsequent mutation of aur and scpA, while mutation of aur had the greatest impact on cytotoxicity to mammalian cells, particularly with conditioned medium (CM) from the more cytotoxic strain LAC. However, SDS-PAGE and western blot analysis of CM confirmed that mutation of sspAB was also required to mimic the phenotype of sarA mutants unable to produce any extracellular proteases. Nevertheless, in a murine model of post-traumatic osteomyelitis, mutation of aur and scpA had the greatest impact on restoring the virulence of LAC and UAMS-1 sarA mutants, with concurrent mutation of sspAB and the spl operon having relatively little effect. These results demonstrate that the increased production of Aur and ScpA in combination with each other is a primary determinant of the reduced virulence of S. aureus sarA mutants in diverse clinical isolates including both methicillin-resistant and methicillin-susceptible strains.IMPORTANCEPrevious work established that SarA plays a primary role in limiting the production of extracellular proteases to prevent them from limiting the abundance of S. aureus virulence factors. Eliminating the production of all 10 extracellular proteases in the methicillin-resistant strain LAC has also been shown to enhance virulence in a murine sepsis model, and this has been attributed to the specific proteases Aur and ScpA. The importance of this work lies in our demonstration that the increased production of these same proteases largely accounts for the decreased virulence of sarA mutants in a murine model of post-traumatic osteomyelitis not only in LAC but also in the methicillin-susceptible human osteomyelitis isolate UAMS-1. This confirms that sarA-mediated repression of Aur and ScpA production plays a critical role in the posttranslational regulation of S. aureus virulence factors in diverse clinical isolates and diverse forms of S. aureus infection.


Assuntos
Metaloendopeptidases , Osteomielite , Infecções Estafilocócicas , Animais , Camundongos , Humanos , Staphylococcus aureus/metabolismo , Virulência/genética , Modelos Animais de Doenças , Meticilina/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeo Hidrolases/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo
2.
Bone ; 187: 117181, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38960295

RESUMO

Staphylococcus aureus osteomyelitis leads to extensive bone destruction. Osteoclasts are bone resorbing cells that are often increased in bone infected with S. aureus. The cytokine RANKL is essential for osteoclast formation under physiological conditions but in vitro evidence suggests that inflammatory cytokines may by-pass the requirement for RANKL. The goal of this study was to determine whether RANKL-dependent osteoclast formation is essential for the bone loss that occurs in a murine model of S. aureus osteomyelitis. To this end, humanized-RANKL mice were infected by direct inoculation of S. aureus into a unicortical defect in the femur. Mice were treated with vehicle or denosumab, a human monoclonal antibody that inhibits RANKL, both before and during a 14-day infection period. The severe cortical bone destruction caused by infection was completely prevented by denosumab administration even though the bacterial burden in the femur was not affected. Osteoclasts were abundant near the inoculation site in vehicle-treated mice but absent in denosumab-treated mice. In situ hybridization demonstrated that S. aureus infection potently stimulated RANKL expression in bone marrow stromal cells. The extensive reactive bone formation that occurs in this osteomyelitis model was also reduced by denosumab administration. Lastly, there was a notable lack of osteoblasts near the infection site suggesting that the normal coupling of bone formation to bone resorption was disrupted by S. aureus infection. These results demonstrate that RANKL-mediated osteoclast formation is required for the bone loss that occurs in S. aureus infection and suggest that disruption of the coupling of bone formation to bone resorption may also contribute to bone loss in this condition.


Assuntos
Reabsorção Óssea , Denosumab , Modelos Animais de Doenças , Osteoclastos , Osteomielite , Ligante RANK , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Osteomielite/microbiologia , Osteomielite/patologia , Osteomielite/metabolismo , Ligante RANK/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Camundongos , Reabsorção Óssea/patologia , Reabsorção Óssea/microbiologia , Reabsorção Óssea/metabolismo , Denosumab/farmacologia , Humanos , Fêmur/patologia , Fêmur/microbiologia , Anticorpos Monoclonais Humanizados/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa