RESUMO
Correlation of density turbulence suppression and reduced plasma transport is observed in the internal transport barrier (ITB) region of JET tokamak discharges with optimized magnetic shear. The suppression occurs in two stages. First, low frequency turbulence and ion transport are reduced across the plasma core by a toroidal velocity shear generated by intense auxiliary heating. Then with the ITB formation, high frequency turbulence and electron transport are reduced locally within the steep pressure gradient region of the ITB.
RESUMO
Disruption avoidance by stabilization of MHD modes through injection of ECRH at different radial locations is reported. Disruptions have been induced in the FTU (Frascati Tokamak Upgrade) deuterium plasmas by Mo injection or by exceeding the density limit (D gas puffing). ECRH is triggered when the V(loop) exceeds a preset threshold value. Coupling between MHD modes (m/n=3/2, 2/1, 3/1) occurs before disruption. Direct heating of one coupled mode is sufficient to avoid disruptions, while heating close to the mode leads to disruption delay. These results could be relevant for the International Thermonuclear Experimental Reactor tokamak operation.