Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 16(3): e1008448, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32208465

RESUMO

The composition of the intestinal microbiota influences the outcome of enteric infections in human and mice. However, the role of specific members and their metabolites contributing to disease severity is largely unknown. Using isogenic mouse lines harboring distinct microbiota communities, we observed highly variable disease kinetics of enteric Citrobacter rodentium colonization after infection. Transfer of communities from susceptible and resistant mice into germ-free mice verified that the varying susceptibilities are determined by microbiota composition. The strongest differences in colonization were observed in the cecum and could be maintained in vitro by coculturing cecal bacteria with C. rodentium. Cohousing of animals as well as the transfer of cultivable bacteria from resistant to susceptible mice led to variable outcomes in the recipient mice. Microbiome analysis revealed that a higher abundance of butyrate-producing bacteria was associated with the resistant phenotype. Quantification of short-chain fatty acid (SCFA) levels before and after infection revealed increased concentrations of acetate, butyrate and propionate in mice with delayed colonization. Addition of physiological concentrations of butyrate, but not of acetate and/or propionate strongly impaired growth of C. rodentium in vitro. In vivo supplementation of susceptible, antibiotic-treated and germ-free mice with butyrate led to the same level of protection, notably only when cecal butyrate concentration reached a concentration higher than 50 nmol/mg indicating a critical threshold for protection. In the recent years, commensal-derived primary and secondary bacterial metabolites emerged as potent modulators of hosts susceptibility to infection. Our results provide evidence that variations in SCFA production in mice fed fibre-rich chow-based diets modulate susceptibility to colonization with Enterobacteriaceae not only in antibiotic-disturbed ecosystems but even in undisturbed microbial communities. These findings emphasise the need for microbiota normalization across laboratory mouse lines for infection experiments with the model-pathogen C. rodentium independent of investigations of diet and antibiotic usage.


Assuntos
Citrobacter rodentium/crescimento & desenvolvimento , Infecções por Enterobacteriaceae/metabolismo , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Animais , Camundongos
2.
Eur J Immunol ; 49(5): 747-757, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30802297

RESUMO

Infection with Clostridium difficile is one of the major causes of health care acquired diarrhea and colitis. Signaling though MyD88 downstream of TLRs is critical for initiating the early protective host response in mouse models of C. difficile infection (CDI). In the intestine, MyD88 is expressed in various tissues and cell types, such as the intestinal epithelium and mononuclear phagocytes (MNP), including DC or macrophages. Using a genetic gain-of-function system, we demonstrate here that restricting functional MyD88 signaling to the intestinal epithelium, but also to MNPs is sufficient to protect mice during acute CDI by upregulation of the intestinal barrier function and recruitment of neutrophils. Nevertheless, we also show that mice depleted for CD11c-expressing MNPs in the intestine display no major defects in mounting an effective inflammatory response, indicating that the absence of these cells is irrelevant for inducing host protection during acute infection. Together, our results highlight the importance of epithelial-specific MyD88 signaling and demonstrate that although functional MyD88 signaling in DC and macrophages alone is sufficient to correct the phenotype of MyD88-deficiency, these cells do not seem to be essential for host protection in MyD88-sufficient animals during acute infection with C. difficile.


Assuntos
Clostridioides difficile/imunologia , Enterocolite Pseudomembranosa/imunologia , Enterocolite Pseudomembranosa/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Transdução de Sinais , Animais , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Enterocolite Pseudomembranosa/microbiologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Mucosa Intestinal/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos
3.
Curr Top Microbiol Immunol ; 398: 123-146, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27738912

RESUMO

The intestinal microbiota is a diverse ecosystem containing thousands of microbial species, whose metabolic activity affects many aspects of human physiology. Large-scale surveys have demonstrated that an individual's microbiota composition is shaped by factors such as diet and the use of medications, including antibiotics. Loss of overall diversity and in some cases loss of single groups of bacteria as a consequence of antibiotic treatment in humans has been associated with enhanced susceptibility toward gastrointestinal infections and with enhanced weight gain and obesity in young children. Moreover, the extensive use of antibiotics has led to an increased abundance of antibiotic resistance genes (ARGs) within commensal bacteria that can be transferred to invading pathogens, which complicates the treatment of bacterial infections. In this review, we provide insight into the complex interplay between the microbiota and antibiotics focussing on (i) the effect of antibiotics on the composition of the microbiota, (ii) the impact of antibiotics on gastrointestinal infections, and (iii) finally the role of the microbiota as reservoir for ARGs. We also discuss how targeted manipulation of the microbiota may be used as an innovative therapeutic approach to reduce the incidence of bacterial infections as well as resulting complications.


Assuntos
Antibacterianos/farmacologia , Bactérias/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Infecções Bacterianas/microbiologia , Ecossistema , Humanos
4.
Microbiome ; 7(1): 28, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782206

RESUMO

BACKGROUND: Bacteria within family S24-7 (phylum Bacteroidetes) are dominant in the mouse gut microbiota and detected in the intestine of other animals. Because they had not been cultured until recently and the family classification is still ambiguous, interaction with their host was difficult to study and confusion still exists regarding sequence data annotation. METHODS: We investigated family S24-7 by combining data from large-scale 16S rRNA gene analysis and from functional and taxonomic studies of metagenomic and cultured species. RESULTS: A total of 685 species was inferred by full-length 16S rRNA gene sequence clustering. While many species could not be assigned ecological habitats (93,045 samples analyzed), the mouse was the most commonly identified host (average of 20% relative abundance and nine co-occurring species). Shotgun metagenomics allowed reconstruction of 59 molecular species, of which 34 were representative of the 16S rRNA gene-derived species clusters. In addition, cultivation efforts allowed isolating five strains representing three species, including two novel taxa. Genome analysis revealed that S24-7 spp. are functionally distinct from neighboring families and versatile with respect to complex carbohydrate degradation. CONCLUSIONS: We provide novel data on the diversity, ecology, and description of bacterial family S24-7, for which the name Muribaculaceae is proposed.


Assuntos
Técnicas Bacteriológicas/métodos , Bacteroides/classificação , Metagenômica/métodos , RNA Ribossômico 16S/genética , Animais , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Biodiversidade , DNA Bacteriano/genética , DNA Ribossômico/genética , Microbioma Gastrointestinal , Camundongos , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
5.
Front Microbiol ; 9: 2913, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564207

RESUMO

Clostridioides difficile is the main cause for nosocomial antibiotic associated diarrhea and has become a major burden for the health care systems of industrial countries. Its main virulence factors, the small GTPase glycosylating toxins TcdA and TcdB, are extensively studied. In contrast, the contribution of other factors to development and progression of C. difficile infection (CDI) are only insufficiently understood. Many bacterial peptidyl-prolyl-cis/trans-isomerases (PPIases) have been described in the context of virulence. Among them are the parvulin-type PrsA-like PPIases of Gram-positive bacteria. On this basis, we identified CD630_35000 as the PrsA2 homolog in C. difficile and conducted its enzymatic and phenotypic characterization in order to assess its involvement during C. difficile infection. For this purpose, wild type CdPrsA2 and mutant variants carrying amino acid exchanges mainly in the PPIase domain were recombinantly produced. Recombinant CdPrsA2 showed PPIase activity toward the substrate peptide Ala-Xaa-Pro-Phe with a preference for positively charged amino acids preceding the proline residue. Mutation of conserved residues in its active site pocket impaired the enzymatic activity. A PrsA2 deficient mutant was generated in the C. difficile 630Δerm background using the ClosTron technology. Inactivation of prsA2 resulted in a reduced germination rate in response to taurocholic acid, and in a slight increase in resistance to the secondary bile acids LCA and DCA. Interestingly, in the absence of PrsA2 colonization of mice by C. difficile 630 was significantly reduced. We concluded that CdPrsA2 is an active PPIase that acts as a virulence modulator by influencing crucial processes like sporulation, germination and bile acid resistance resulting in attenuated mice colonization.

6.
Cell Host Microbe ; 21(6): 682-694.e5, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28618267

RESUMO

The microbiota contributes to colonization resistance against invading pathogens by competing for metabolites, producing inhibitory substances, and priming protective immune responses. However, the specific commensal bacteria that promote host resistance and immune-mediated protection remain largely elusive. Using isogenic mouse lines with distinct microbiota profiles, we demonstrate that severity of disease induced by enteric Salmonella Typhimurium infection is strongly modulated by microbiota composition in individual lines. Transferring a restricted community of cultivable intestinal commensals from protected into susceptible mice decreases S. Typhimurium tissue colonization and consequently disease severity. This reduced tissue colonization, along with ameliorated weight loss and prolonged survival, depends on microbiota-enhanced IFNγ production, as IFNγ-deficient mice do not exhibit protective effects. Innate cells and CD4+ T cells increase in number and show high levels of IFNγ after transfer of the commensal community. Thus, distinct microbiota members prevent intestinal Salmonella infection by enhancing antibacterial IFNγ responses.


Assuntos
Microbioma Gastrointestinal/imunologia , Interferon gama/imunologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Simbiose/imunologia , Animais , Carga Bacteriana , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , DNA Bacteriano/análise , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Imunidade Inata , Interferon gama/farmacologia , Intestinos/imunologia , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Salmonelose Animal/microbiologia , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa