Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
PLoS Pathog ; 17(7): e1009753, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260666

RESUMO

To understand the diversity of immune responses to SARS-CoV-2 and distinguish features that predispose individuals to severe COVID-19, we developed a mechanistic, within-host mathematical model and virtual patient cohort. Our results suggest that virtual patients with low production rates of infected cell derived IFN subsequently experienced highly inflammatory disease phenotypes, compared to those with early and robust IFN responses. In these in silico patients, the maximum concentration of IL-6 was also a major predictor of CD8+ T cell depletion. Our analyses predicted that individuals with severe COVID-19 also have accelerated monocyte-to-macrophage differentiation mediated by increased IL-6 and reduced type I IFN signalling. Together, these findings suggest biomarkers driving the development of severe COVID-19 and support early interventions aimed at reducing inflammation.


Assuntos
COVID-19/imunologia , Modelos Imunológicos , SARS-CoV-2 , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos/imunologia , COVID-19/virologia , Estudos de Coortes , Biologia Computacional , Simulação por Computador , Suscetibilidade a Doenças/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Inata , Terapia de Imunossupressão , Interferons/metabolismo , Interleucina-6/metabolismo , Macrófagos/imunologia , Pandemias , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Interface Usuário-Computador
3.
PLoS Comput Biol ; 17(10): e1009480, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662338

RESUMO

The endpoint dilution assay's output, the 50% infectious dose (ID50), is calculated using the Reed-Muench or Spearman-Kärber mathematical approximations, which are biased and often miscalculated. We introduce a replacement for the ID50 that we call Specific INfection (SIN) along with a free and open-source web-application, midSIN (https://midsin.physics.ryerson.ca) to calculate it. midSIN computes a virus sample's SIN concentration using Bayesian inference based on the results of a standard endpoint dilution assay, and requires no changes to current experimental protocols. We analyzed influenza and respiratory syncytial virus samples using midSIN and demonstrated that the SIN/mL reliably corresponds to the number of infections a sample will cause per mL. It can therefore be used directly to achieve a desired multiplicity of infection, similarly to how plaque or focus forming units (PFU, FFU) are used. midSIN's estimates are shown to be more accurate and robust than the Reed-Muench and Spearman-Kärber approximations. The impact of endpoint dilution plate design choices (dilution factor, replicates per dilution) on measurement accuracy is also explored. The simplicity of SIN as a measure and the greater accuracy provided by midSIN make them an easy and superior replacement for the TCID50 and other in vitro culture ID50 measures. We hope to see their universal adoption to measure the infectivity of virus samples.


Assuntos
Bioensaio/métodos , Biologia Computacional/métodos , Ensaio de Placa Viral/métodos , Viroses/virologia , Teorema de Bayes
4.
J Infect Dis ; 223(10): 1806-1816, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32959872

RESUMO

BACKGROUND: Secondary bacterial coinfections are ranked as a leading cause of hospitalization and morbid conditions associated with influenza. Because vitamin A deficiency (VAD) and insufficiency are frequent in both developed and developing countries, we asked how VAD influences coinfection severity. METHODS: VAD and control mice were infected with influenza virus for evaluation of inflammatory cytokines, cellular immune responses, and viral clearance. Influenza-infected mice were coinfected with Streptococcus pneumoniae to study weight loss and survival. RESULTS: Naive VAD mouse lungs exhibited dysregulated immune function. Neutrophils were enhanced in frequency and there was a significant reduction in RANTES (regulated on activation of normal T cells expressed and secreted), a chemokine instrumental in T-cell homing and recruitment. After influenza virus infection, VAD mice experienced failures in CD4+ T-cell recruitment and B-cell organization into lymphoid structures in the lung. VAD mice exhibited higher viral titers than controls and slow viral clearance. There were elevated levels of inflammatory cytokines and innate cell subsets in the lungs. However, arginase, a marker of alternatively activated M2 macrophages, was rare. When influenza-infected VAD animals were exposed to bacteria, they experienced a 100% mortality rate. CONCLUSION: Data showed that VAD dysregulated the immune response. Consequently, secondary bacterial infections were 100% lethal in influenza-infected VAD mice.


Assuntos
Coinfecção , Infecções por Orthomyxoviridae , Infecções Pneumocócicas/complicações , Deficiência de Vitamina A , Animais , Citocinas , Imunidade , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Orthomyxoviridae , Infecções por Orthomyxoviridae/complicações , Infecções Pneumocócicas/mortalidade , Streptococcus pneumoniae , Deficiência de Vitamina A/complicações
5.
Infect Immun ; 89(7): e0002321, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33875471

RESUMO

Streptococcus pneumoniae (pneumococcus) is one of the primary bacterial pathogens that complicates influenza virus infections. These bacterial coinfections increase influenza-associated morbidity and mortality through a number of immunological and viral-mediated mechanisms, but the specific bacterial genes that contribute to postinfluenza pathogenicity are not known. Here, we used genome-wide transposon mutagenesis (Tn-Seq) to reveal bacterial genes that confer improved fitness in influenza virus-infected hosts. The majority of the 32 genes identified are involved in bacterial metabolism, including nucleotide biosynthesis, amino acid biosynthesis, protein translation, and membrane transport. We generated mutants with single-gene deletions (SGD) of five of the genes identified, SPD1414, SPD2047 (cbiO1), SPD0058 (purD), SPD1098, and SPD0822 (proB), to investigate their effects on in vivo fitness, disease severity, and host immune responses. The growth of the SGD mutants was slightly attenuated in vitro and in vivo, but each still grew to high titers in the lungs of mock- and influenza virus-infected hosts. Despite high bacterial loads, mortality was significantly reduced or delayed with all SGD mutants. Time-dependent reductions in pulmonary neutrophils, inflammatory macrophages, and select proinflammatory cytokines and chemokines were also observed. Immunohistochemical staining further revealed altered neutrophil distribution with reduced degeneration in the lungs of influenza virus-SGD mutant-coinfected animals. These studies demonstrate a critical role for specific bacterial genes and for bacterial metabolism in driving virulence and modulating immune function during influenza-associated bacterial pneumonia.


Assuntos
Coinfecção , Aptidão Genética , Interações Hospedeiro-Patógeno , Vírus da Influenza A , Influenza Humana/virologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/fisiologia , Proteínas de Bactérias/genética , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mediadores da Inflamação , Vírus da Influenza A/imunologia , Leucócitos/imunologia , Leucócitos/metabolismo , Mutação , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/patologia
6.
PLoS Pathog ; 9(7): e1003530, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935491

RESUMO

Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology.


Assuntos
Antirretrovirais/uso terapêutico , Células Dendríticas/efeitos dos fármacos , Interferon-alfa/biossíntese , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Receptor 7 Toll-Like/antagonistas & inibidores , Receptor Toll-Like 9/antagonistas & inibidores , Animais , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Interferon-alfa/sangue , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/virologia , Macaca mulatta , Terapia de Alvo Molecular , Oligonucleotídeos Fosforotioatos/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/sangue , Carga Viral/efeitos dos fármacos , Proteínas Virais/sangue , Proteínas Virais/genética , Proteínas Virais/metabolismo , Ativação Viral/efeitos dos fármacos
7.
J Immunol ; 190(1): 80-7, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23203929

RESUMO

Dengue is a globally expanding disease caused by infection with dengue virus (DENV) that ranges from febrile illness to acute disease with serious complications. Secondary infection predisposes individuals to more severe disease, and B lymphocytes may play a role in this phenomenon through production of Ab that enhance infection. To better define the acute B cell response during dengue, we analyzed peripheral B cells from an adult Brazilian hospital cohort with primary and secondary DENV infections of varying clinical severity. Circulating B cells in dengue patients were proliferating, activated, and apoptotic relative to individuals with other febrile illnesses. Severe secondary DENV infection was associated with extraordinary peak plasmablast frequencies between 4 and 7 d of illness, averaging 46% and reaching 87% of B cells, significantly greater than those seen in mild illness or primary infections. On average >70% of IgG-secreting cells in individuals with severe secondary DENV infection were DENV specific. Plasmablasts produced Ab that cross-reacted with heterotypic DENV serotypes, but with a 3-fold greater reactivity to DENV-3, the infecting serotype. Plasmablast frequency did not correlate with acute serum-neutralizing Ab titers to any DENV serotype regardless of severity of disease. These findings indicate that massive expansion of DENV-specific and serotype cross-reactive plasmablasts occurs in acute secondary DENV infection of adults in Brazil, which is associated with increasing disease severity.


Assuntos
Vírus da Dengue/imunologia , Dengue/patologia , Dengue/virologia , Plasmócitos/imunologia , Plasmócitos/virologia , Índice de Gravidade de Doença , Doença Aguda , Adolescente , Adulto , Idoso , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/patologia , Subpopulações de Linfócitos B/virologia , Brasil , Criança , Estudos de Coortes , Dengue/imunologia , Vírus da Dengue/patogenicidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasmócitos/patologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/patologia , Subpopulações de Linfócitos T/virologia , Adulto Jovem
8.
Viruses ; 15(3)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36992320

RESUMO

The emergence and availability of closely related clinical isolates of SARS-CoV-2 offers a unique opportunity to identify novel nonsynonymous mutations that may impact phenotype. Global sequencing efforts show that SARS-CoV-2 variants have emerged and then been replaced since the beginning of the pandemic, yet we have limited information regarding the breadth of variant-specific host responses. Using primary cell cultures and the K18-hACE2 mouse, we investigated the replication, innate immune response, and pathology of closely related, clinical variants circulating during the first wave of the pandemic. Mathematical modeling of the lung viral replication of four clinical isolates showed a dichotomy between two B.1. isolates with significantly faster and slower infected cell clearance rates, respectively. While isolates induced several common immune host responses to infection, one B.1 isolate was unique in the promotion of eosinophil-associated proteins IL-5 and CCL11. Moreover, its mortality rate was significantly slower. Lung microscopic histopathology suggested further phenotypic divergence among the five isolates showing three distinct sets of phenotypes: (i) consolidation, alveolar hemorrhage, and inflammation, (ii) interstitial inflammation/septal thickening and peribronchiolar/perivascular lymphoid cells, and (iii) consolidation, alveolar involvement, and endothelial hypertrophy/margination. Together these findings show divergence in the phenotypic outcomes of these clinical isolates and reveal the potential importance of nonsynonymous mutations in nsp2 and ORF8.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , Genótipo , Fenótipo , Inflamação , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão
9.
FEMS Microbes ; 3: xtac022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37332507

RESUMO

Secondary bacterial infections increase influenza-related morbidity and mortality, particularly if acquired after 5-7 d from the viral onset. Synergistic host responses and direct pathogen-pathogen interactions are thought to lead to a state of hyperinflammation, but the kinetics of the lung pathology have not yet been detailed, and identifying the contribution of different mechanisms to disease is difficult because these may change over time. To address this gap, we examined host-pathogen and lung pathology dynamics following a secondary bacterial infection initiated at different time points after influenza within a murine model. We then used a mathematical approach to quantify the increased virus dissemination in the lung, coinfection time-dependent bacterial kinetics, and virus-mediated and postbacterial depletion of alveolar macrophages. The data showed that viral loads increase regardless of coinfection timing, which our mathematical model predicted and histomorphometry data confirmed was due to a robust increase in the number of infected cells. Bacterial loads were dependent on the time of coinfection and corresponded to the level of IAV-induced alveolar macrophage depletion. Our mathematical model suggested that the additional depletion of these cells following the bacterial invasion was mediated primarily by the virus. Contrary to current belief, inflammation was not enhanced and did not correlate with neutrophilia. The enhanced disease severity was correlated to inflammation, but this was due to a nonlinearity in this correlation. This study highlights the importance of dissecting nonlinearities during complex infections and demonstrated the increased dissemination of virus within the lung during bacterial coinfection and simultaneous modulation of immune responses during influenza-associated bacterial pneumonia.

10.
bioRxiv ; 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35262077

RESUMO

Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate SARS-CoV-2 infection increased the risk of pneumococcal coinfection in a time-dependent, but sexindependent, manner in the transgenic K18-hACE mouse model of COVID-19. Bacterial coinfection was not established at 3 d post-virus, but increased lethality was observed when the bacteria was initiated at 5 or 7 d post-virus infection (pvi). Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.

11.
Front Immunol ; 13: 894534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634338

RESUMO

Secondary bacterial infections can exacerbate SARS-CoV-2 infection, but their prevalence and impact remain poorly understood. Here, we established that a mild to moderate infection with the SARS-CoV-2 USA-WA1/2020 strain increased the risk of pneumococcal (type 2 strain D39) coinfection in a time-dependent, but sex-independent, manner in the transgenic K18-hACE2 mouse model of COVID-19. Bacterial coinfection increased lethality when the bacteria was initiated at 5 or 7 d post-virus infection (pvi) but not at 3 d pvi. Bacterial outgrowth was accompanied by neutrophilia in the groups coinfected at 7 d pvi and reductions in B cells, T cells, IL-6, IL-15, IL-18, and LIF were present in groups coinfected at 5 d pvi. However, viral burden, lung pathology, cytokines, chemokines, and immune cell activation were largely unchanged after bacterial coinfection. Examining surviving animals more than a week after infection resolution suggested that immune cell activation remained high and was exacerbated in the lungs of coinfected animals compared with SARS-CoV-2 infection alone. These data suggest that SARS-CoV-2 increases susceptibility and pathogenicity to bacterial coinfection, and further studies are needed to understand and combat disease associated with bacterial pneumonia in COVID-19 patients.


Assuntos
Infecções Bacterianas , COVID-19 , Coinfecção , Animais , Bactérias , Humanos , Camundongos , Camundongos Transgênicos , SARS-CoV-2
12.
Elife ; 102021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34282728

RESUMO

Influenza viruses cause a significant amount of morbidity and mortality. Understanding host immune control efficacy and how different factors influence lung injury and disease severity are critical. We established and validated dynamical connections between viral loads, infected cells, CD8+ T cells, lung injury, inflammation, and disease severity using an integrative mathematical model-experiment exchange. Our results showed that the dynamics of inflammation and virus-inflicted lung injury are distinct and nonlinearly related to disease severity, and that these two pathologic measurements can be independently predicted using the model-derived infected cell dynamics. Our findings further indicated that the relative CD8+ T cell dynamics paralleled the percent of the lung that had resolved with the rate of CD8+ T cell-mediated clearance rapidly accelerating by over 48,000 times in 2 days. This complimented our analyses showing a negative correlation between the efficacy of innate and adaptive immune-mediated infected cell clearance, and that infection duration was driven by CD8+ T cell magnitude rather than efficacy and could be significantly prolonged if the ratio of CD8+ T cells to infected cells was sufficiently low. These links between important pathogen kinetics and host pathology enhance our ability to forecast disease progression, potential complications, and therapeutic efficacy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Inflamação/patologia , Vírus da Influenza A Subtipo H1N1/imunologia , Pulmão/patologia , Infecções por Orthomyxoviridae/virologia , Animais , Feminino , Cinética , Modelos Lineares , Camundongos , Camundongos Endogâmicos BALB C , Índice de Gravidade de Doença , Carga Viral
13.
bioRxiv ; 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33442689

RESUMO

To understand the diversity of immune responses to SARS-CoV-2 and distinguish features that predispose individuals to severe COVID-19, we developed a mechanistic, within-host mathematical model and virtual patient cohort. Our results indicate that virtual patients with low production rates of infected cell derived IFN subsequently experienced highly inflammatory disease phenotypes, compared to those with early and robust IFN responses. In these in silico patients, the maximum concentration of IL-6 was also a major predictor of CD8 + T cell depletion. Our analyses predicted that individuals with severe COVID-19 also have accelerated monocyte-to-macrophage differentiation that was mediated by increased IL-6 and reduced type I IFN signalling. Together, these findings identify biomarkers driving the development of severe COVID-19 and support early interventions aimed at reducing inflammation. AUTHOR SUMMARY: Understanding of how the immune system responds to SARS-CoV-2 infections is critical for improving diagnostic and treatment approaches. Identifying which immune mechanisms lead to divergent outcomes can be clinically difficult, and experimental models and longitudinal data are only beginning to emerge. In response, we developed a mechanistic, mathematical and computational model of the immunopathology of COVID-19 calibrated to and validated against a broad set of experimental and clinical immunological data. To study the drivers of severe COVID-19, we used our model to expand a cohort of virtual patients, each with realistic disease dynamics. Our results identify key processes that regulate the immune response to SARS-CoV-2 infection in virtual patients and suggest viable therapeutic targets, underlining the importance of a rational approach to studying novel pathogens using intra-host models.

14.
SIAM J Sci Comput ; 41(4): A2212-A2238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749599

RESUMO

Inference on unknown quantities in dynamical systems via observational data is essential for providing meaningful insight, furnishing accurate predictions, enabling robust control, and establishing appropriate designs for future experiments. Merging mathematical theory with empirical measurements in a statistically coherent way is critical and challenges abound, e.g., ill-posedness of the parameter estimation problem, proper regularization and incorporation of prior knowledge, and computational limitations. To address these issues, we propose a new method for learning parameterized dynamical systems from data. We first customize and fit a surrogate stochastic process directly to observational data, front-loading with statistical learning to respect prior knowledge (e.g., smoothness), cope with challenging data features like heteroskedasticity, heavy tails, and censoring. Then, samples of the stochastic process are used as "surrogate data" and point estimates are computed via ordinary point estimation methods in a modular fashion. Attractive features of this two-step approach include modularity and trivial parallelizability. We demonstrate its advantages on a predator-prey simulation study and on a real-world application involving within-host influenza virus infection data paired with a viral kinetic model, with comparisons to a more conventional Markov chain Monte Carlo (MCMC) based Bayesian approach.

15.
Front Microbiol ; 9: 1554, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042759

RESUMO

Mathematical models that describe infection kinetics help elucidate the time scales, effectiveness, and mechanisms underlying viral growth and infection resolution. For influenza A virus (IAV) infections, the standard viral kinetic model has been used to investigate the effect of different IAV proteins, immune mechanisms, antiviral actions, and bacterial coinfection, among others. We sought to further define the kinetics of IAV infections by infecting mice with influenza A/PR8 and measuring viral loads with high frequency and precision over the course of infection. The data highlighted dynamics that were not previously noted, including viral titers that remain elevated for several days during mid-infection and a sharp 4-5 log10 decline in virus within 1 day as the infection resolves. The standard viral kinetic model, which has been widely used within the field, could not capture these dynamics. Thus, we developed a new model that could simultaneously quantify the different phases of viral growth and decay with high accuracy. The model suggests that the slow and fast phases of virus decay are due to the infected cell clearance rate changing as the density of infected cells changes. To characterize this model, we fit the model to the viral load data, examined the parameter behavior, and connected the results and parameters to linear regression estimates. The resulting parameters and model dynamics revealed that the rate of viral clearance during resolution occurs 25 times faster than the clearance during mid-infection and that small decreases to this rate can significantly prolong the infection. This likely reflects the high efficiency of the adaptive immune response. The new model provides a well-characterized representation of IAV infection dynamics, is useful for analyzing and interpreting viral load dynamics in the absence of immunological data, and gives further insight into the regulation of viral control.

16.
Sci Rep ; 6: 38703, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974820

RESUMO

Secondary bacterial infections increase morbidity and mortality of influenza A virus (IAV) infections. Bacteria are able to invade due to virus-induced depletion of alveolar macrophages (AMs), but this is not the only contributing factor. By analyzing a kinetic model, we uncovered a nonlinear initial dose threshold that is dependent on the amount of virus-induced AM depletion. The threshold separates the growth and clearance phenotypes such that bacteria decline for dose-AM depletion combinations below the threshold, stay constant near the threshold, and increase above the threshold. In addition, the distance from the threshold correlates to the growth rate. Because AM depletion changes throughout an IAV infection, the dose requirement for bacterial invasion also changes accordingly. Using the threshold, we found that the dose requirement drops dramatically during the first 7d of IAV infection. We then validated these analytical predictions by infecting mice with doses below or above the predicted threshold over the course of IAV infection. These results identify the nonlinear way in which two independent factors work together to support successful post-influenza bacterial invasion. They provide insight into coinfection timing, the heterogeneity in outcome, the probability of acquiring a coinfection, and the use of new therapeutic strategies to combat viral-bacterial coinfections.


Assuntos
Infecções Bacterianas , Influenza Humana , Modelos Imunológicos , Alvéolos Pulmonares , Infecções Bacterianas/etiologia , Infecções Bacterianas/imunologia , Humanos , Influenza Humana/complicações , Influenza Humana/imunologia , Influenza Humana/microbiologia , Cinética , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , Alvéolos Pulmonares/virologia
17.
Virus Res ; 179: 231-4, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24246304

RESUMO

Dengue virus infection elicits a spectrum of clinical presentations ranging from asymptomatic to severe disease. The mechanisms leading to severe dengue are not known, however it has been reported that the complement system is hyper-activated in severe dengue. Screening of complement proteins demonstrated that C1q, a pattern recognition molecule, can bind directly to dengue virus envelope protein and to whole dengue virus serotype 2. Incubation of dengue virus serotype 2 with C1q prior to infection of THP-1 cells led to decreased virus infectivity and modulation of mRNA expression of immunoregulatory molecules suggesting reduced inflammatory responses.


Assuntos
Complemento C1q/metabolismo , Vírus da Dengue/fisiologia , Dengue/genética , Mediadores da Inflamação/imunologia , Antígeno B7-2/genética , Antígeno B7-2/imunologia , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Linhagem Celular , Complemento C1q/imunologia , Dengue/imunologia , Dengue/metabolismo , Dengue/virologia , Vírus da Dengue/classificação , Vírus da Dengue/imunologia , Humanos , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/imunologia , Ligação Proteica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
18.
J Child Sex Abus ; 17(2): 101-16, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19042240

RESUMO

Adolescent survivors of sexual abuse frequently report severe trauma, depression, anxiety, and low self-esteem. While cognitive-behavioral group interventions show promise, interpreting efficacy is problematic due to commonly high attrition. This article reports promising exploratory study findings relating to a 12-week multimodal abuse-specific group intervention with a nonoffending parent/caregiver component. Participants (aged 11 16 years) consisted of six adolescents with severe abuse histories, and their caregivers. Participants completed pre-, post-, and 1-month follow-up measures. The results were consistent with the possibility that the program produced clinically meaningful reductions in abuse-related psychological sequelae, the program had excellent face validity with participants, and there were no dropouts.


Assuntos
Cuidadores , Abuso Sexual na Infância/psicologia , Relações Interpessoais , Psicoterapia de Grupo/métodos , Sobreviventes/psicologia , Adolescente , Comportamento do Adolescente/psicologia , Adulto , Criança , Comportamento Infantil/psicologia , Terapia Cognitivo-Comportamental/métodos , Feminino , Humanos , Masculino , Autoimagem , Resultado do Tratamento , Confiança
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa