Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(31): 12426-31, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22802668

RESUMO

Systemic delivery of therapeutic agents to solid tumors is hindered by vascular and interstitial barriers. We hypothesized that prostate tumor specific epigallocatechin-gallate (EGCg) functionalized radioactive gold nanoparticles, when delivered intratumorally (IT), would circumvent transport barriers, resulting in targeted delivery of therapeutic payloads. The results described herein support our hypothesis. We report the development of inherently therapeutic gold nanoparticles derived from the Au-198 isotope; the range of the (198)Au ß-particle (approximately 11 mm in tissue or approximately 1100 cell diameters) is sufficiently long to provide cross-fire effects of a radiation dose delivered to cells within the prostate gland and short enough to minimize the radiation dose to critical tissues near the periphery of the capsule. The formulation of biocompatible (198)AuNPs utilizes the redox chemistry of prostate tumor specific phytochemical EGCg as it converts gold salt into gold nanoparticles and also selectively binds with excellent affinity to Laminin67R receptors, which are over expressed in prostate tumor cells. Pharmacokinetic studies in PC-3 xenograft SCID mice showed approximately 72% retention of (198)AuNP-EGCg in tumors 24 h after intratumoral administration. Therapeutic studies showed 80% reduction of tumor volumes after 28 d demonstrating significant inhibition of tumor growth compared to controls. This innovative nanotechnological approach serves as a basis for designing biocompatible target specific antineoplastic agents. This novel intratumorally injectable (198)AuNP-EGCg nanotherapeutic agent may provide significant advances in oncology for use as an effective treatment for prostate and other solid tumors.


Assuntos
Anticarcinógenos/farmacocinética , Catequina/análogos & derivados , Ouro/farmacocinética , Nanopartículas Metálicas , Neoplasias da Próstata/tratamento farmacológico , Animais , Anticarcinógenos/farmacologia , Catequina/farmacocinética , Catequina/farmacologia , Linhagem Celular Tumoral , Feminino , Ouro/farmacologia , Radioisótopos de Ouro/farmacocinética , Radioisótopos de Ouro/farmacologia , Humanos , Masculino , Camundongos , Camundongos SCID , Tamanho da Partícula , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
Curr Opin Endocrinol Diabetes Obes ; 17(1): 69-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19901831

RESUMO

PURPOSE OF REVIEW: The purpose of the present review is to describe new, innovative strategies of diagnosing and treating specific human cancers using a cadre of radiolabeled regulatory peptides. RECENT FINDINGS: Peptide receptor-targeted radionuclide therapy is a method of site-directed radiotherapy that specifically targets human cancers expressing a cognate receptor-subtype in very high numbers. Ideally, the procedure targets only the primary or metastatic disease and is minimally invasive, with little radiation damage to normal, collateral tissues. For treatment strategies of this type to be effective, it is critical to evaluate the toxicity of the treatment protocol, the radiation dosimetry of the therapeutic regimen, and the biological profile of the radiopharmaceutical, including biodistribution and pharmacokinetics of the drug. Site-directed molecular imaging procedures via gamma-scintigraphy can address many of the critical issues associated with peptide receptor-targeted radionuclide therapy and it is, therefore, necessary to describe the effective balance between the clinical benefits and risks of this treatment strategy. SUMMARY: Continued development in the design or chemical structure of radiolabeled, biologically active peptides could do much to improve the targeting ability of these drugs, thereby creating new and innovative strategies for diagnosis or treatment of human cancers.


Assuntos
Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Peptídeos/uso terapêutico , Compostos Radiofarmacêuticos/uso terapêutico , Humanos , Imagem Molecular , Neoplasias/metabolismo , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Peptídeos/química , Cintilografia , Compostos Radiofarmacêuticos/química , Receptores da Bombesina/metabolismo , Receptores de Melanocortina/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa