Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Nature ; 590(7844): 85-88, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536647

RESUMO

The transplutonium elements (atomic numbers 95-103) are a group of metals that lie at the edge of the periodic table. As a result, the patterns and trends used to predict and control the physics and chemistry for transition metals, main-group elements and lanthanides are less applicable to transplutonium elements. Furthermore, understanding the properties of these heavy elements has been restricted by their scarcity and radioactivity. This is especially true for einsteinium (Es), the heaviest element on the periodic table that can currently be generated in quantities sufficient to enable classical macroscale studies1. Here we characterize a coordination complex of einsteinium, using less than 200 nanograms of 254Es (with half-life of 275.7(5) days), with an organic hydroxypyridinone-based chelating ligand. X-ray absorption spectroscopic and structural studies are used to determine the energy of the L3-edge and a bond distance of einsteinium. Photophysical measurements show antenna sensitization of EsIII luminescence; they also reveal a hypsochromic shift on metal complexation, which had not previously been observed in lower-atomic-number actinide elements. These findings are indicative of an intermediate spin-orbit coupling scheme in which j-j coupling (whereby single-electron orbital angular momentum and spin are first coupled to form a total angular momentum, j) prevails over Russell-Saunders coupling. Together with previous actinide complexation studies2, our results highlight the need to continue studying the unusual behaviour of the actinide elements, especially those that are scarce and short-lived.

2.
J Physiol ; 600(11): 2729-2746, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474455

RESUMO

We studied monozygotic (MZ) and dizygotic (DZ) twin pairs following resistance (RES) and endurance (END) training to assess genetic and environmental contributions to cerebrovascular function. Cerebrovascular function (rest, autoregulation, hypercapnia, exercise) was assessed in 86 healthy same-sex MZ (30 pairs) and DZ (13 pairs) twins, who underwent 3 months of END and RES. Carbon dioxide ( PETCO2${P_{{\rm{ETC}}{{\rm{O}}_{\rm{2}}}}}$ ), mean arterial pressure (MAP) and middle cerebral artery velocity (MCAv) were measured and MCAv resistance (MCACVRi ) was calculated. Resting MCAv reduced by -2.8 cm/s following RES (P = 0.024), with no change following END (-0.3 cm/s, P = 0.758). Change in MCACVRi following RES was +0.11 mmHg/cm/s (P < 0.001), which was significantly greater than END (+0.02 mmHg/cm/s, P = 0.030). MAP also increased following RES (+4 mmHg, P = 0.010), but not END (+1 mmHg, P = 0.518). No changes were apparent in PETCO2${P_{{\rm{ETC}}{{\rm{O}}_{\rm{2}}}}}$ . At rest, positive response rates following RES ranged from 27 to 71% and from 40 to 64% following END. Intraclass correlations between twins were moderate for most variables at baseline. In response to training, only MZ pairs were significantly correlated for a change in MCAv (P = 0.005) and low frequency phase (P = 0.047) following RES.This study is the first to compare cerebrovascular function following RES and END in MZ and DZ twins. Most individuals who did not respond to one modality were able to respond by switching modality, and baseline heritability estimates were higher than training response. Exercise professionals should therefore consider modality and environmental factors when optimising interventions. KEY POINTS: Characterising individual responses to resistance and endurance exercise training can inform optimal strategies for exercise prescription. This study utilised monozygotic and dizygotic twins in a randomised cross-over study to determine individual responsiveness to different modalities of exercise training. The influence of environment vs. genetics on cerebrovascular responses to training was determined. It is apparent that individuals respond differently to distinct exercise stimuli and that switching modality may be a beneficial way to obtain positive responses in cerebrovascular function. This study has implications for improving individualised exercise prescription to maintain or improve cerebrovascular structure and function.


Assuntos
Treino Aeróbico , Gêmeos Dizigóticos , Circulação Cerebrovascular/fisiologia , Estudos Cross-Over , Exercício Físico/fisiologia , Humanos , Artéria Cerebral Média/fisiologia , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética
3.
J Physiol ; 600(6): 1385-1403, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34904229

RESUMO

Cerebrovascular CO2 reactivity (CVR) is often considered a bioassay of cerebrovascular endothelial function. We recently introduced a test of cerebral shear-mediated dilatation (cSMD) that may better reflect endothelial function. We aimed to determine the nitric oxide (NO)-dependency of CVR and cSMD. Eleven volunteers underwent a steady-state CVR test and transient CO2 test of cSMD during intravenous infusion of the NO synthase inhibitor NG -monomethyl-l-arginine (l-NMMA) or volume-matched saline (placebo; single-blinded and counter-balanced). We measured cerebral blood flow (CBF; duplex ultrasound), intra-arterial blood pressure and PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ . Paired arterial and jugular venous blood sampling allowed for the determination of trans-cerebral NO2- exchange (ozone-based chemiluminescence). l-NMMA reduced arterial NO2- by ∼25% versus saline (74.3 ± 39.9 vs. 98.1 ± 34.2 nM; P = 0.03). The steady-state CVR (20.1 ± 11.6 nM/min at baseline vs. 3.2 ± 16.7 nM/min at +9 mmHg PaCO2${P_{{\rm{aC}}{{\rm{O}}_{\rm{2}}}}}$ ; P = 0.017) and transient cSMD tests (3.4 ± 5.9 nM/min at baseline vs. -1.8 ± 8.2 nM/min at 120 s post-CO2 ; P = 0.044) shifted trans-cerebral NO2- exchange towards a greater net release (a negative value indicates release). Although this trans-cerebral NO2- release was abolished by l-NMMA, CVR did not differ between the saline and l-NMMA trials (57.2 ± 14.6 vs. 54.1 ± 12.1 ml/min/mmHg; P = 0.49), nor did l-NMMA impact peak internal carotid artery dilatation during the steady-state CVR test (6.2 ± 4.5 vs. 6.2 ± 5.0% dilatation; P = 0.960). However, l-NMMA reduced cSMD by ∼37% compared to saline (2.91 ± 1.38 vs. 4.65 ± 2.50%; P = 0.009). Our findings indicate that NO is not an obligatory regulator of steady-state CVR. Further, our novel transient CO2 test of cSMD is largely NO-dependent and provides an in vivo bioassay of NO-mediated cerebrovascular function in humans. KEY POINTS: Emerging evidence indicates that a transient CO2 stimulus elicits shear-mediated dilatation of the internal carotid artery, termed cerebral shear-mediated dilatation. Whether or not cerebrovascular reactivity to a steady-state CO2 stimulus is NO-dependent remains unclear in humans. During both a steady-state cerebrovascular reactivity test and a transient CO2 test of cerebral shear-mediated dilatation, trans-cerebral nitrite exchange shifted towards a net release indicating cerebrovascular NO production; this response was not evident following intravenous infusion of the non-selective NO synthase inhibitor NG -monomethyl-l-arginine. NO synthase blockade did not alter cerebrovascular reactivity in the steady-state CO2 test; however, cerebral shear-mediated dilatation following a transient CO2 stimulus was reduced by ∼37% following intravenous infusion of NG -monomethyl-l-arginine. NO is not obligatory for cerebrovascular reactivity to CO2 , but is a key contributor to cerebral shear-mediated dilatation.


Assuntos
Dióxido de Carbono , Óxido Nítrico , Circulação Cerebrovascular/fisiologia , Dilatação , Inibidores Enzimáticos/farmacologia , Humanos , Óxido Nítrico Sintase , Dióxido de Nitrogênio , ômega-N-Metilarginina/farmacologia
4.
J Synchrotron Radiat ; 29(Pt 2): 315-322, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254293

RESUMO

The solution-state interactions of plutonium and berkelium with the octadentate chelator 3,4,3-LI(1,2-HOPO) (343-HOPO) were investigated and characterized by X-ray absorption spectroscopy, which revealed in situ reductive decomposition of the tetravalent species of both actinide metals to yield Pu(III) and Bk(III) coordination complexes. X-ray absorption near-edge structure (XANES) measurements were the first indication of in situ synchrotron redox chemistry as the Pu threshold and white-line position energies for Pu-343-HOPO were in good agreement with known diagnostic Pu(III) species, whereas Bk-343-HOPO results were found to mirror the XANES behavior of Bk(III)-DTPA. Extended X-ray absorption fine structure results revealed An-OHOPO bond distances of 2.498 (5) and 2.415 (2) Šfor Pu and Bk, respectively, which match well with bond distances obtained for trivalent actinides and 343-HOPO via density functional theory calculations. Pu(III)- and Bk(III)-343-HOPO data also provide initial insight into actinide periodicity as they can be compared with previous results with Am(III)-, Cm(III)-, Cf(III)-, and Es(III)-343-HOPO, which indicate there is likely an increase in 5f covalency and heterogeneity across the actinide series.


Assuntos
Complexos de Coordenação , Plutônio , Berkélio , Quelantes/química , Plutônio/química
5.
Wilderness Environ Med ; 33(1): 33-42, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34998707

RESUMO

INTRODUCTION: We explored the incidence of acute mountain sickness (AMS) and extravascular lung water (ELW) in children in relation to changes in body composition and peripheral blood oxygenation (SpO2) during 1 week of acclimatization to 3800 m. METHODS: In a prospective cohort study, 10 children (7 female, ages 7-14 y) and 10 sex-matched adults (ages 23-44 y) traveled via automobile from sea level to 3000 m for 2 nights, followed by 4 nights at 3800 m. Each morning, body mass and body water (bioelectrical impedance), SpO2 (pulse oximetry), AMS (Lake Louise Questionnaire), and ELW (transthoracic echocardiography) were measured. RESULTS: No differences were found between children and adults in SpO2 or ELW. At 3800 m 7 of 10 children were AMS+ vs 4 of 10 adults. Among those AMS+ at 3800 m, the severity was greater in children compared to adults (5±1 vs 3 ± 0; P=0.005). Loss of body mass occurred more quickly in children (day 5 vs day 7) and to a greater extent (-7±3% vs -2±2%; P<0.001); these changes were mediated via a larger relative loss in total body water in children than in adults (-6±5% vs -2±2%; P=0.027). CONCLUSIONS: Children demonstrated a higher incidence of AMS than adults, with greater severity among those AMS+. The loss of body water and body mass at high altitude was also greater in children, albeit unrelated to AMS severity. In addition to awareness of AMS, strategies to maintain body weight and hydration in children traveling to high altitudes should be considered.


Assuntos
Doença da Altitude , Altitude , Doença Aguda , Adolescente , Adulto , Doença da Altitude/epidemiologia , Água Corporal , Criança , Feminino , Humanos , Masculino , Estudos Prospectivos , Adulto Jovem
6.
J Physiol ; 599(14): 3513-3530, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34047356

RESUMO

KEY POINTS: We investigated the influence of arterial PCO2 (PaCO2 ) with and without experimentally altered pH on cerebral blood flow (CBF) regulation at sea level and with acclimatization to 5050 m. At sea level and high altitude, we assessed stepwise alterations in PaCO2 following metabolic acidosis (via 2 days of oral acetazolamide; ACZ) with and without acute restoration of pH (via intravenous sodium bicarbonate; ACZ+HCO3- ). Total resting CBF was unchanged between trials at each altitude even though arterial pH and [HCO3- ] (i.e. buffering capacity) were effectively altered. The cerebrovascular responses to changes in arterial [H+ ]/pH were consistent with the altered relationship between PaCO2 and [H+ ]/pH following ACZ at high altitude (i.e. leftward x-intercept shifts). Absolute cerebral blood velocity (CBV) and the sensitivity of CBV to PaCO2 was unchanged between trials at high altitude, indicating that CBF is acutely regulated by PaCO2 rather than arterial pH. ABSTRACT: Alterations in acid-base balance with progressive acclimatization to high altitude have been well-established. However, how respiratory alkalosis and the resultant metabolic compensation interact to regulate cerebral blood flow (CBF) is uncertain. We addressed this via three separate experimental trials at sea level and following partial acclimatization (14 to 20 days) at 5050 m; involving: (1) resting acid-base balance (control); (2) following metabolic acidosis via 2 days of oral acetazolamide at 250 mg every 8 h (ACZ; pH: Δ -0.07 ± 0.04 and base excess: Δ -5.7 ± 1.9 mEq⋅l-1 , trial effects: P < 0.001 and P < 0.001, respectively); and (3) after acute normalization of arterial acidosis via intravenous sodium bicarbonate (ACZ + HCO3- ; pH: Δ -0.01 ± 0.04 and base excess: Δ -1.5 ± 2.1 mEq⋅l-1 , trial effects: P = 1.000 and P = 0.052, respectively). Within each trial, we utilized transcranial Doppler ultrasound to assess the cerebral blood velocity (CBV) response to stepwise alterations in arterial PCO2 (PaCO2 ), i.e. cerebrovascular CO2 reactivity. Resting CBF (via Duplex ultrasound) was unaltered between trials within each altitude, indicating that respiratory compensation (i.e. Δ -3.4 ± 2.3 mmHg PaCO2 , trial effect: P < 0.001) was sufficient to offset any elevations in CBF induced via the ACZ-mediated metabolic acidosis. Between trials at high altitude, we observed consistent leftward shifts in both the PaCO2 -pH and CBV-pH responses across the CO2 reactivity tests with experimentally reduced arterial pH via ACZ. When indexed against PaCO2 - rather than pH - the absolute CBV and sensitivity of CBV-PaCO2 was unchanged between trials at high altitude. Taken together, following acclimatization, CO2 -mediated changes in cerebrovascular tone rather than arterial [H+ ]/pH is integral to CBF regulation at high altitude.


Assuntos
Acidose , Dióxido de Carbono , Aclimatação , Altitude , Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular , Humanos
7.
Am J Physiol Heart Circ Physiol ; 321(5): H881-H892, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34559581

RESUMO

It is generally considered that regular exercise maintains brain health and reduces the risk of cerebrovascular diseases such as stroke and dementia. Since the benefits of different "types" of exercise are unclear, we sought to compare the impacts of endurance and resistance training on cerebrovascular function. In a randomized and crossover design, 68 young healthy adults were recruited to participate in 3 mo of resistance and endurance training. Cerebral hemodynamics through the internal carotid, vertebral, middle and posterior cerebral arteries were measured using Duplex ultrasound and transcranial Doppler at rest and during acute exercise, dynamic autoregulation, and cerebrovascular reactivity (to hypercapnia). Following resistance, but not endurance training, middle cerebral artery velocity and pulsatility index significantly decreased (P < 0.01 and P = 0.02, respectively), whereas mean arterial pressure and indices of cerebrovascular resistance in the middle, posterior, and internal carotid arteries all increased (P < 0.05). Cerebrovascular resistance indices in response to acute exercise and hypercapnia also significantly increased following resistance (P = 0.02), but not endurance training. Our findings, which were consistent across multiple domains of cerebrovascular function, suggest that episodic increases in arterial pressure associated with resistance training may increase cerebrovascular resistance. The implications of long-term resistance training on brain health require future study, especially in populations with pre-existing cerebral hypoperfusion and/or hypotension.NEW & NOTEWORTHY Three months of endurance exercise did not elicit adaptation in any domain of cerebrovascular function in young healthy inactive volunteers. However, resistance training induced decreased pulsatility in the extracranial arteries and increased indices of cerebrovascular resistance in cerebral arteries. This increase in cerebrovascular resistance, apparent at baseline and in response to both hypercapnia and acute exercise, may reflect a protective response in the face of changes in arterial pressure during resistance exercise.


Assuntos
Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Treino Aeróbico , Hemodinâmica , Treinamento Resistido , Adaptação Fisiológica , Adulto , Velocidade do Fluxo Sanguíneo , Artéria Carótida Interna/diagnóstico por imagem , Artéria Carótida Interna/fisiologia , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Masculino , Artéria Cerebral Média/diagnóstico por imagem , Artéria Cerebral Média/fisiologia , Artéria Cerebral Posterior/diagnóstico por imagem , Artéria Cerebral Posterior/fisiologia , Distribuição Aleatória , Fatores de Tempo , Ultrassonografia Doppler Dupla , Ultrassonografia Doppler Transcraniana , Artéria Vertebral/diagnóstico por imagem , Artéria Vertebral/fisiologia , Adulto Jovem
8.
Exp Physiol ; 106(7): 1643-1653, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33938052

RESUMO

NEW FINDINGS: What is the central question of this study? Does cerebrovascular pulsatility respond differently to acute increases in arterial stiffness in middle-aged compared with young adults? What is the main finding and its importance? Compared with young adults, middle-aged adults exhibited similar changes in cerebral pulsatile damping despite attenuated changes in carotid diameter and cerebrovascular pulsatility during blood pressure-dependent, but not blood pressure-independent, increases in large artery stiffness. ABSTRACT: Acute manipulation of arterial stiffness through interventions that increase sympathetic activity might provoke cerebral pulsatility and damping and reveal whether cerebrovascular haemodynamics respond differently to transient elevations in arterial stiffness in middle-aged compared with young adults. We compared cerebral pulsatility and damping in middle-aged versus young adults during two different sympathetic interventions [cold pressor test (CP) and lower-body negative pressure (LBNP)] that increase arterial stiffness acutely. Cerebrovascular haemodynamics were assessed in 15 middle-aged (54 ± 7 years old; 11 female) and 15 sex-matched young adults (25 ± 4 years old) at rest and during the CP test (4 min, 6.4 ± 0.8°C) and LBNP (6 min, -20 mmHg). Mean blood pressure was measured continuously via finger photoplethysmography. Carotid-femoral pulse wave velocity (cfPWV) and carotid stiffness were measured via tonometry and ultrasound. Blood velocity pulsatility index (PI) was measured at the middle cerebral (MCA) and common carotid artery (CCA) using Doppler, with pulsatile damping calculated as CCA PI divided by MCA PI. Increases in cfPWV were driven by changes in mean pressure during CP but not during LBNP in both groups (P < 0.05). Pulsatile damping decreased in both groups (P < 0.05) despite reductions in MCA PI and greater carotid dilatation during CP in young compared with middle-aged adults (P < 0.05). Pressure-independent increases in cfPWV during LBNP did not alter pulsatile damping but decreased MCA PI in both young and middle-aged adults (P < 0.05). These data suggest that changes in carotid diameter and cerebrovascular pulsatility differ between young and middle-aged adults despite similar changes in cerebral pulsatile damping during blood pressure-dependent, but not blood pressure-independent, increases in large artery stiffness.


Assuntos
Rigidez Vascular , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Pressão Sanguínea/fisiologia , Circulação Cerebrovascular/fisiologia , Feminino , Hemodinâmica , Humanos , Pessoa de Meia-Idade , Análise de Onda de Pulso , Rigidez Vascular/fisiologia , Adulto Jovem
9.
Exp Physiol ; 106(12): 2542-2555, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34730862

RESUMO

NEW FINDINGS: What is the central question of this study? During a steady-state cerebrovascular CO2 reactivity test, do different data extraction time points change the outcome for cerebrovascular CO2 reactivity? What is the main finding and its importance? Once steady-state end-tidal pressure of CO2 and haemodynamics were achieved, cerebral blood flow was stable, and so cerebrovascular CO2 reactivity values remained unchanged regardless of data extraction length (30 vs. 60 s) and time point (at 2-5 min). ABSTRACT: This study assessed cerebrovascular CO2 reactivity (CVR) and examined data extraction time points and durations with the hypotheses that: (1) there would be no difference in CVR values when calculated with cerebral blood flow (CBF) measures at different time points following the attainment of physiological steady-state, (2) once steady-state was achieved there would be no difference in CVR values derived from 60 to 30 s extracted means, and (3) that changes in V̇E would not be associated with any changes in CVR. We conducted a single step iso-oxic hypercapnic CVR test using dynamic end-tidal forcing (end-tidal PCO2 , +9.4 ± 0.7 mmHg), and transcranial Doppler and Duplex ultrasound of middle cerebral artery (MCA) and internal carotid artery (ICA), respectively. From the second minute of hypercapnia onwards, physiological steady-state was apparent, with no subsequent changes in end-tidal PCO2 , PO2 or mean arterial pressure. Therefore, CVR measured in the ICA and MCA was stable following the second minute of hypercapnia onwards. Data extraction durations of 30 or 60 s did not give statistically different CVR values. No differences in CVR were detected following the second minute of hypercapnia after accounting for mean arterial pressure via calculated conductance or covariation of mean arterial pressure. These findings demonstrate that, provided the PCO2 stimulus remains in a steady-state, data extracted from any minute of a CVR test during physiological steady-state conditions produce equivalent CVR values; any change in the CVR value would represent a failure of CVR mechanisms, a change in the magnitude of the stimulus, or measurement error.


Assuntos
Dióxido de Carbono , Circulação Cerebrovascular , Velocidade do Fluxo Sanguíneo/fisiologia , Circulação Cerebrovascular/fisiologia , Humanos , Hipercapnia , Artéria Cerebral Média/fisiologia , Ultrassonografia Doppler Transcraniana
10.
J Anim Ecol ; 90(4): 955-966, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33481254

RESUMO

While the tendency to return to previously visited locations-termed 'site fidelity'-is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals' recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity. We compared inter-year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance-based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren-ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a 'win-stay, lose-switch' strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter-annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species-specific differences in attraction to known sites, contribute to variation in the expression of this behaviour. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.


Assuntos
Cervos , Rena , África , Animais , Ecossistema , América do Norte
11.
Inorg Chem ; 60(2): 973-981, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33356197

RESUMO

The solution-state interactions between octadentate hydroxypyridinone (HOPO) and catecholamide (CAM) chelating ligands and uranium were investigated and characterized by UV-visible spectrophotometry and X-ray absorption spectroscopy (XAS), as well as electrochemically via spectroelectrochemistry (SEC) and cyclic voltammetry (CV) measurements. Depending on the selected chelator, we demonstrate the controlled ability to bind and stabilize UIV, generating with 3,4,3-LI(1,2-HOPO), a tetravalent uranium complex that is practically inert toward oxidation or hydrolysis in acidic, aqueous solution. At physiological pH values, we are also able to bind and stabilize UIV to a lesser extent, as evidenced by the mix of UIV and UVI complexes observed via XAS. CV and SEC measurements confirmed that the UIV complex formed with 3,4,3-LI(1,2-HOPO) is redox inert in acidic media, and UVI ions can be reduced, likely proceeding via a two-electron reduction process.

12.
Inorg Chem ; 60(9): 6125-6134, 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33866779

RESUMO

The separation of trivalent lanthanides and actinides is challenging because of their similar sizes and charge densities. S-donating extractants have shown significant selectivity for trivalent actinides over lanthanides, with single-stage americium/lanthanide separation efficiencies for some thiol-based extractants reported at >99.999%. While such separations could transform the nuclear waste management landscape, these systems are often limited by the hydrolytic and radiolytic stability of the extractant. Progress away from thiol-based systems is limited by the poorly understood and complex interactions of these extractants in organic phases, where molecular aggregation and micelle formation obfuscates assessment of the metal-extractant coordination environment. Because S-donating thioethers are generally more resistant to hydrolysis and oxidation and the aqueous phase coordination chemistry is anticipated to lack complications brought on by micelle formation, we have considered three thioethers, 2,2'-thiodiacetic acid (TDA), (2R,5S)-tetrahydrothiophene-2,5-dicarboxylic acid, and 2,5-thiophenedicarboxylic acid (TPA), as possible trivalent actinide selective reagents. Formation constants, extended X-ray absorption fine structure spectroscopy, and computational studies were completed for thioether complexes with a variety of trivalent lanthanides and actinides including Nd, Eu, Tb, Am, Cm, Bk, and Cf. TPA was found to have moderately higher selectivity for the actinides because of its ability to bind actinides in a different manner than lanthanides, but the utility of TPA is limited by poor water solubility and high rigidity. While significant competition with water for the metal center limits the efficacy of aqueous-based thioethers for separations, the characterization of these solution-phase, S-containing lanthanide and actinide complexes is the most comprehensively available in the literature to date. This is due to the breadth of lanthanides and actinides considered as well as the techniques deployed and serves as a platform for the further development of S-containing reagents for actinide separations. Additionally, this paper reports on the first bond lengths for Cf and Bk with a neutral S donor.

13.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680873

RESUMO

Biomineralization of Cu has been shown to control contaminant dynamics and transport in soils. However, very little is known about the role that subsurface microorganisms may play in the biogeochemical cycling of Cu. In this study, we investigate the bioreduction of Cu(II) by the subsurface metal-reducing bacterium Geobacter sulfurreducens Rapid removal of Cu from solution was observed in cell suspensions of G. sulfurreducens when Cu(II) was supplied, while transmission electron microscopy (TEM) analyses showed the formation of electron-dense nanoparticles associated with the cell surface. Energy-dispersive X-ray spectroscopy (EDX) point analysis and EDX spectrum image maps revealed that the nanoparticles are rich in both Cu and S. This finding was confirmed by X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses, which identified the nanoparticles as Cu2S. Biomineralization of CuxS nanoparticles in soils has been reported to enhance the colloidal transport of a number of contaminants, including Pb, Cd, and Hg. However, formation of these CuxS nanoparticles has only been observed under sulfate-reducing conditions and could not be repeated using isolates of implicated organisms. As G. sulfurreducens is unable to respire sulfate, and no reducible sulfur was supplied to the cells, these data suggest a novel mechanism for the biomineralization of Cu2S under anoxic conditions. The implications of these findings for the biogeochemical cycling of Cu and other metals as well as the green production of Cu catalysts are discussed.IMPORTANCE Dissimilatory metal-reducing bacteria are ubiquitous in soils and aquifers and are known to utilize a wide range of metals as terminal electron acceptors. These transformations play an important role in the biogeochemical cycling of metals in pristine and contaminated environments and can be harnessed for bioremediation and metal bioprocessing purposes. However, relatively little is known about their interactions with Cu. As a trace element that becomes toxic in excess, Cu can adversely affect soil biota and fertility. In addition, biomineralization of Cu nanoparticles has been reported to enhance the mobilization of other toxic metals. Here, we demonstrate that when supplied with acetate under anoxic conditions, the model metal-reducing bacterium Geobacter sulfurreducens can transform soluble Cu(II) to Cu2S nanoparticles. This study provides new insights into Cu biomineralization by microorganisms and suggests that contaminant mobilization enhanced by Cu biomineralization could be facilitated by Geobacter species and related organisms.


Assuntos
Biomineralização , Cobre/metabolismo , Geobacter/metabolismo , Nanopartículas Metálicas , Sulfetos/metabolismo
14.
Chemistry ; 26(11): 2354-2359, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31914232

RESUMO

Octadentate hydroxypyridinone (HOPO) and catecholamide (CAM) siderophore analogues are known to be efficacious chelators of the actinide cations, and these ligands are also capable of facilitating both activation and reduction of actinyl species. Utilizing X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies, as well as cyclic voltammetry measurements, herein, we elucidate chelation-based mechanisms for driving reactivity and initiating redox processes in a family of neptunyl-HOPO and CAM complexes. Based on the selected chelator, the ability to control the oxidation state of neptunium and the speed of reduction and concurrent oxo group activation was demonstrated. Most notably, reduction kinetics for the NpV O2 +/ /NpIV redox couple upon chelation by the ligands 3,4,3-LI(1,2-HOPO) and 3,4,3-LI(CAM)2 (1,2-HOPO)2 was observed to be faster than ever reported, and in fact quicker than we could measure using either X-ray absorption spectroscopy or electrochemical techniques.

15.
Small ; 14(10)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359400

RESUMO

Copper nanoparticles (Cu-NPs) have a wide range of applications as heterogeneous catalysts. In this study, a novel green biosynthesis route for producing Cu-NPs using the metal-reducing bacterium, Shewanella oneidensis is demonstrated. Thin section transmission electron microscopy shows that the Cu-NPs are predominantly intracellular and present in a typical size range of 20-40 nm. Serial block-face scanning electron microscopy demonstrates the Cu-NPs are well-dispersed across the 3D structure of the cells. X-ray absorption near-edge spectroscopy and extended X-ray absorption fine-structure spectroscopy analysis show the nanoparticles are Cu(0), however, atomic resolution images and electron energy loss spectroscopy suggest partial oxidation of the surface layer to Cu2 O upon exposure to air. The catalytic activity of the Cu-NPs is demonstrated in an archetypal "click chemistry" reaction, generating good yields during azide-alkyne cycloadditions, most likely catalyzed by the Cu(I) surface layer of the nanoparticles. Furthermore, cytochrome deletion mutants suggest a novel metal reduction system is involved in enzymatic Cu(II) reduction and Cu-NP synthesis, which is not dependent on the Mtr pathway commonly used to reduce other high oxidation state metals in this bacterium. This work demonstrates a novel, simple, green biosynthesis method for producing efficient copper nanoparticle catalysts.

17.
Eur J Appl Physiol ; 118(8): 1527-1538, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29767351

RESUMO

The first accounts of measuring cerebral blood flow (CBF) in humans were made by Angelo Mosso in ~1880, who recorded brain pulsations in patients with skull defects. In 1890, Charles Roy and Charles Sherrington determined in animals that brain pulsations-assessed via a similar method used by Mosso-were altered during a variety of stimuli including sensory nerve stimulation, asphyxia, and pharmacological interventions. Between 1880 and 1944, measurements for CBF were typically relied on skull abnormalities in humans. Thereafter, Kety and Schmidt introduced a new methodological approach in 1945 that involved nitrous oxide dilution combined with serial arterial and jugular venous blood sampling. Less than a decade later (1950's), several research groups employed the Kety-Schmidt technique to assess the effects of exercise on global CBF and metabolism; these studies demonstrated an uncoupling of CBF and metabolism during exercise, which was contrary to early hypotheses. However, there were several limitations to this technique related to low temporal resolution and the inability to measure regional CBF. These limitations were overcome in the 1960's when transcranial Doppler ultrasound (TCD) was developed as a method to measure beat-by-beat cerebral blood velocity. Between 1990 and 2010, TCD further progressed our understanding of CBF regulation and allowed for insight into other mechanistic factors, independent of local metabolism, involved in regulating CBF during exercise. Recently, it was discovered that TCD may not be accurate under several physiological conditions. Other measures of indexing CBF such as Duplex ultrasound and magnetic resonance imaging, although not without some limitations, may be more applicable for future investigations.


Assuntos
Circulação Cerebrovascular , Exercício Físico , Hemodinâmica , Angiografia Cerebral/métodos , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Fisiologia/história , Ultrassonografia Doppler Dupla/métodos
18.
Eur J Appl Physiol ; 118(3): 657-668, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29356948

RESUMO

PURPOSE: This study investigated whether reported improvements in blood flow distribution, and the possible related effects on thermoregulation during exercise following supplementation with beetroot juice (BR), a rich source of dietary nitrate (NO3-), are mitigated in the heat. METHODS: 12 male endurance-trained cyclists (age 27 ± 6 years, VO2peak 68.6 ± 8.1 ml kg-1 min-1) completed two 60 min submaximal cycling trials at 60% of VO2peak power output. Trials were performed in hot environmental conditions (33.3 ± 0.4 °C, 48.8 ± 3.0% RH) following 3 days of supplementation with either NO3--rich BR (6.5 mmol NO3- for 2 days and 13 mmol NO3- on the final day) or NO3--depleted placebo (PLA). Salivary NO3- and nitrite (NO2-) were measured before and after the supplementation period. During exercise, cutaneous blood flow, blood pressure (MAP), core temperature (Tc), mean skin temperature (Tsk), indices of muscle oxygenation and oxygen (O2) consumption were measured. RESULTS: Salivary NO3- and NO2- increased significantly following BR by 680 and 890%, respectively. There were no significant differences observed for cutaneous blood flow, MAP, Tc, Tsk, muscle oxygenation, or O2 consumption between BR and PLA. CONCLUSION: This investigation shows that the ergogenic effects and health benefits of BR supplementation, such as augmented cutaneous blood flow, reduced MAP, increased muscle oxygenation, and improved aerobic efficiency may be attenuated when exercise is performed in hot conditions.


Assuntos
Ciclismo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Regulação da Temperatura Corporal/efeitos dos fármacos , Temperatura Alta , Nitratos/farmacologia , Adulto , Suplementos Nutricionais , Humanos , Masculino , Nitratos/administração & dosagem , Consumo de Oxigênio , Temperatura Cutânea , Estresse Fisiológico
19.
Am J Physiol Heart Circ Physiol ; 313(1): H24-H31, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28389602

RESUMO

Evidence for shear stress as a regulator of carotid artery dilation in response to increased arterial CO2 was recently demonstrated in humans during sustained elevations in CO2 (hypercapnia); however, the relative contributions of CO2 and shear stress to this response remains unclear. We examined the hypothesis that, after a 30-s transient increase in arterial CO2 tension and consequent increase in internal carotid artery shear stress, internal carotid artery diameter would increase, indicating shear-mediated dilation, in the absence of concurrent hypercapnia. In 27 healthy participants, partial pressures of end-tidal O2 and CO2, ventilation (pneumotachography), blood pressure (finger photoplethysmography), heart rate (electrocardiogram), internal carotid artery flow, diameter, and shear stress (high-resolution duplex ultrasound), and middle cerebral artery blood velocity (transcranial Doppler) were measured during 4-min steady-state and transient 30-s hypercapnic tests (both +9 mmHg CO2). Internal carotid artery dilation was lower in the transient compared with steady-state hypercapnia (3.3 ± 1.9 vs. 5.3 ± 2.9%, respectively, P < 0.03). Increases in internal carotid artery shear stress preceded increases in diameter in both transient (time: 16.8 ± 13.2 vs. 59.4 ± 60.3 s, P < 0.01) and steady-state (time: 18.2 ± 14.2 vs. 110.3 ± 79.6 s, P < 0.01) tests. Internal carotid artery dilation was positively correlated with shear rate area under the curve in the transient (r2 = 0.44, P < 0.01) but not steady-state (r2 = 0.02, P = 0.53) trial. Collectively, these results suggest that hypercapnia induces shear-mediated dilation of the internal carotid artery in humans. This study further promotes the application and development of hypercapnia as a clinical strategy for the assessment of cerebrovascular vasodilatory function and health in humans.NEW & NOTEWORTHY Shear stress dilates the internal carotid artery in humans. This vasodilatory response occurs independent of other physiological factors, as demonstrated by our transient CO2 test, and is strongly correlated to shear area under the curve. Assessing carotid shear-mediated dilation may provide a future avenue for assessing cerebrovascular health and the risk of cerebrovascular events.


Assuntos
Velocidade do Fluxo Sanguíneo , Dióxido de Carbono/sangue , Artéria Carótida Interna/fisiopatologia , Hipercapnia/fisiopatologia , Resistência ao Cisalhamento , Vasodilatação , Feminino , Humanos , Masculino , Mecanotransdução Celular , Estresse Mecânico , Adulto Jovem
20.
J Nutr ; 147(9): 1686-1692, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794213

RESUMO

Background: Cocoa contains polyphenols that are thought to be beneficial for vascular health.Objective: We assessed the impact of chocolate containing distinct concentrations of cocoa on cerebrovascular function and cognition.Methods: Using a counterbalanced within-subject design, we compared the acute impact of consumption of energy-matched chocolate containing 80%, 35%, and 0% single-origin cacao on vascular endothelial function, cognition, and cerebrovascular function in 12 healthy postmenopausal women (mean ± SD age: 57.3 ± 5.3 y). Participants attended a familiarization session, followed by 3 experimental trials, each separated by 1 wk. Outcome measures included cerebral blood flow velocity (CBFv) responses, recorded before and during completion of a computerized cognitive assessment battery (CogState); brachial artery flow-mediated dilation (FMD); and hemodynamic responses (heart rate and blood pressure).Results: When CBFv data before and after chocolate intake were compared between conditions through the use of 2-factor ANOVA, an interaction effect (P = 0.003) and main effects for chocolate (P = 0.043) and time (P = 0.001) were evident. Post hoc analysis revealed that both milk chocolate (MC; 35% cocoa; P = 0.02) and dark chocolate (DC; 80% cocoa; P = 0.003) induced significantly lower cerebral blood flow responses during the cognitive tasks, after normalizing for changes in arterial pressure. DC consumption also increased brachial FMD compared with the baseline value before chocolate consumption (P = 0.002), whereas MC and white chocolate (0% cocoa) caused no change (P-interaction between conditions = 0.034).Conclusions: Consumption of chocolate containing high concentrations of cocoa enhanced vascular endothelial function, which was reflected by improvements in FMD. Cognitive function outcomes did not differ between conditions; however, cerebral blood flow responses during these cognitive tasks were lower in those consuming MC and DC. These findings suggest that chocolate containing high concentrations of cocoa may modify the relation between cerebral metabolism and blood flow responses in postmenopausal women. This trial was registered at www.ANZCTR.orgau as ACTRN12616000990426.


Assuntos
Artéria Braquial/efeitos dos fármacos , Cacau/química , Circulação Cerebrovascular/efeitos dos fármacos , Chocolate , Endotélio Vascular/efeitos dos fármacos , Polifenóis/farmacologia , Vasodilatação/efeitos dos fármacos , Análise de Variância , Pressão Sanguínea/efeitos dos fármacos , Artéria Braquial/fisiologia , Chocolate/análise , Chocolate/classificação , Cognição/efeitos dos fármacos , Endotélio Vascular/fisiologia , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Preparações de Plantas/química , Preparações de Plantas/farmacologia , Pós-Menopausa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa