Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 107(Pt A): 395-402, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32961294

RESUMO

As anadromous fish, sockeye salmon undergo complex endocrine changes when they return to their natal grounds to spawn. This is correlated with major immunological changes that will affect their response to pathogens. In spite of these challenges, salmon need to maintain sufficiently robust immunity to survive until spawning is complete, but the nature of immune adaptations during the spawning stage remains poorly understood. Our central question is to determine if sockeye salmon stimulate their immune system during the return migration and if so, whether this is a protective response. To begin answering this question, here we characterized the nature and timing of potential changes in anterior kidney immune fingerprints between salmon collected from seven different sites along the Kenai river, including the mouth of the river and two spawning sites. Our results revealed significant changes in abundance of B lineage, but not myeloid lineage cells during the spawning journey. This included early, transient and significant increases in abundance of both IgM+ and IgT+ B cells soon after fish entered the river, followed by a transient, significant increase in abundance of IgM++ secreting cells in fish caught mid-river, and ending with a return to base levels of both cell populations in fish caught at spawning sites. Further, males appeared to have higher immune activation than females, as reflected by higher abundance of IgM++ secreting cells, higher spleen index, and higher titers of serum IgM. Although roles for these newly generated IgM++ secreting cells remain unclear at this time, the data complement our previous work which supported roles for long-lived plasma cells to protect returning salmon from pathogens at their natal grounds. We conclude that sockeye salmon are capable of inducing B cell responses during their spawning journey, with males having stronger responses compared to females. B cell activation during the return journey may provide returning adults with additional protection against pathogens not encountered as juveniles.


Assuntos
Linfócitos B/imunologia , Linhagem da Célula , Rim Cefálico/imunologia , Células Mieloides/imunologia , Salmão/imunologia , Alaska , Migração Animal , Animais , Feminino , Masculino
2.
Gen Comp Endocrinol ; 281: 41-48, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31102581

RESUMO

The Acanthaster planci species-complex [Crown-of-Thorns Seastar (COTS)] are highly fecund echinoderms that exhibit population outbreaks on coral reef ecosystems worldwide, including the Australian Great Barrier Reef. A better understanding of the COTS molecular biology is critical towards efforts in controlling outbreaks and assisting reef recovery. In seastars, the heterodimeric relaxin-like gonad stimulating peptide (RGP) is responsible for triggering a neuroendocrine cascade that regulates resumption of oocyte meiosis prior to spawning. Our comparative RNA-seq analysis indicates a general increase in RGP gene expression in the female radial nerve cord during the reproductive season. Also, the sensory tentacles demonstrate a significantly higher expression level than radial nerve cord. A recombinant COTS RGP, generated in a yeast expression system, is highly effective in inducing oocyte germinal vesicle breakdown (GVBD), followed by ovulation from ovarian fragments. The findings of this study provide a foundation for more in-depth molecular analysis of the reproductive neuroendocrine physiology of the COTS and the RGP.


Assuntos
Oócitos/metabolismo , Ovário/metabolismo , Ovulação/fisiologia , Proteínas Recombinantes/farmacologia , Relaxina/farmacologia , Estrelas-do-Mar/fisiologia , Animais , Bioensaio , Feminino , Oócitos/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Relaxina/genética , Relaxina/metabolismo , Estrelas-do-Mar/efeitos dos fármacos , Estrelas-do-Mar/genética
3.
J Chem Ecol ; 44(2): 147-177, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29362949

RESUMO

Within the Phylum Echinodermata, the class Asteroidea, commonly known as starfish and sea stars, encompasses a large number of benthos inhabiting genera and species with various feeding modalities including herbivores, carnivores, omnivores and detritivores. The Asteroidea rely on chemosensation throughout their life histories including hunting prey, avoiding or deterring predators, in the formation of spawning aggregations, synchronizing gamete release and targeting appropriate locations for larval settlement. The identities of many of the chemical stimuli that mediate these physiological and behavioural processes remain unresolved even though evidence indicates they play pivotal roles in the functionality of benthic communities. Aspects of chemosensation, as well as putative chemically-mediated behaviours and the molecular mechanisms of chemoreception, within the Asteroidea are reviewed here, with particular reference to the coral reef pest the Crown-of-Thorns starfish Acanthaster planci species complex, in the context of mitigation of population outbreaks.


Assuntos
Equinodermos/fisiologia , Feromônios/metabolismo , Animais , Carnivoridade , Recifes de Corais , Equinodermos/química , Equinodermos/crescimento & desenvolvimento , Herbivoria , Metamorfose Biológica , Controle de Pragas , Feromônios/análise , Comportamento Predatório , Estrelas-do-Mar/química , Estrelas-do-Mar/crescimento & desenvolvimento , Estrelas-do-Mar/fisiologia , Simbiose
4.
Sci Rep ; 13(1): 3349, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849815

RESUMO

The nervous system of the Asteroidea (starfish or seastar) consists of radial nerve cords (RNCs) that interconnect with a ring nerve. Despite its relative simplicity, it facilitates the movement of multiple arms and numerous tube feet, as well as regeneration of damaged limbs. Here, we investigated the RNC ultrastructure and its molecular components within the of Pacific crown-of-thorns starfish (COTS; Acanthaster sp.), a well-known coral predator that in high-density outbreaks has major ecological impacts on coral reefs. We describe the presence of an array of unique small bulbous bulbs (40-100 µm diameter) that project from the ectoneural region of the adult RNC. Each comprise large secretory-like cells and prominent cilia. In contrast, juvenile COTS and its congener Acanthaster brevispinus lack these features, both of which are non-corallivorous. Proteomic analysis of the RNC (and isolated neural bulbs) provides the first comprehensive echinoderm protein database for neural tissue, including numerous secreted proteins associated with signalling, transport and defence. The neural bulbs contained several neuropeptides (e.g., bombyxin-type, starfish myorelaxant peptide, secretogranin 7B2-like, Ap15a-like, and ApNp35) and Deleted in Malignant Brain Tumor 1-like proteins. In summary, this study provides a new insight into the novel traits of COTS, a major pest on coral reefs, and a proteomics resource that can be used to develop (bio)control strategies and understand molecular mechanisms of regeneration.


Assuntos
Distrofias de Cones e Bastonetes , Tecido Nervoso , Animais , Nervo Radial , Proteômica , Estrelas-do-Mar , Equinodermos
5.
PeerJ ; 11: e15689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637177

RESUMO

Background: The crown-of-thorns starfish (COTS; Acanthaster species) is a slow-moving corallivore protected by an extensive array of long, sharp toxic spines. Envenomation can result in nausea, numbness, vomiting, joint aches and sometimes paralysis. Small molecule saponins and the plancitoxin proteins have been implicated in COTS toxicity. Methods: Brine shrimp lethality assays were used to confirm the secretion of spine toxin biomolecules. Histological analysis, followed by spine-derived proteomics helped to explain the source and identity of proteins, while quantitative RNA-sequencing and phylogeny confirmed target gene expression and relative conservation, respectively. Results: We demonstrate the lethality of COTS spine secreted biomolecules on brine shrimp, including significant toxicity using aboral spine semi-purifications of >10 kDa (p > 0.05, 9.82 µg/ml), supporting the presence of secreted proteins as toxins. Ultrastructure observations of the COTS aboral spine showed the presence of pores that could facilitate the distribution of secreted proteins. Subsequent purification and mass spectrometry analysis of spine-derived proteins identified numerous secretory proteins, including plancitoxins, as well as those with relatively high gene expression in spines, including phospholipase A2, protease inhibitor 16-like protein, ependymin-related proteins and those uncharacterized. Some secretory proteins (e.g., vitellogenin and deleted in malignant brain tumor protein 1) were not highly expressed in spine tissue, yet the spine may serve as a storage or release site. This study contributes to our understanding of the COTS through functional, ultrastructural and proteomic analysis of aboral spines.


Assuntos
Artemia , Proteômica , Animais , Artralgia , Bioensaio , Transporte Biológico
6.
Front Genet ; 10: 77, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30838021

RESUMO

Wild sea cucumber resources have been rapidly exhausted and therefore there is an urgent need to develop approaches that will help restocking. Currently, there is a lack of information regarding the genes involved in sea cucumber reproductive processes. The neurohormone relaxin-like gonad-stimulating peptide (RGP) has been identified as the active gonad-stimulating peptide in sea stars (Asteroidea), which could also be present in other echinoderm groups. In this study, a sea cucumber RGP was identified and confirmed by phylogenetic analysis. A recombinant Holothuria scabra RGP was produced in the yeast Pichia pastoris and confirmed by mass spectrometry. To assess bioactivity, four levels of purification were tested in an in vitro germinal vesicle breakdown (GVBD) bioassay. The most pure form induced 98.56 ± 1.19% GVBD in H. scabra and 89.57 ± 1.19% GVBD in Holothuria leucospilota. Cruder levels of purification still resulted in some GVBD. Upon single injection into female H. scabra, the recombinant RGP induced head waving behavior followed by spawning within 90-170 min. Spawned oocytes were fertilized successfully, larvae settled and developed into juveniles. Our results provide a key finding for the development of a break-through new artificial breeding approach in sea cucumber aquaculture.

7.
Artigo em Inglês | MEDLINE | ID: mdl-30374327

RESUMO

Neurotransmitters serve as chemical mediators of cell communication, and are known to have important roles in regulating numerous physiological and metabolic events in eumetazoans. The Crown-of-Thorns Seastar (COTS) is an asteroid echinoderm that has been the focus of numerous ecological studies due to its negative impact on coral reefs when in large numbers. Research devoted to its neural signaling, from basic anatomy to the key small neurotransmitters, would expand our current understanding of neural-driven biological processes, such as growth and reproduction, and offers a new approach to exploring the propensity for COTS population explosions and subsequent collapse. In this study we investigated the metabolomic profiles of small molecule neurotransmitters in the COTS radial nerve cord. Multivariate analysis shows differential abundance of small molecule neurotransmitters in male and female COTS, and in food-deprived individuals with significant differences between sexes in gamma-aminobutyric acid (GABA), histamine and serotonin, and significant differences in histamine and serotonin between satiation states. Annotation established that the majority of biosynthesis enzyme genes are present in the COTS genome. The spatial distribution of GABA, histamine and serotonin in the radial nerve cord was subsequently confirmed by immunolocalization; serotonin is most prominent within the ectoneural regions, including unique neural bulbs, while GABA and histamine localize primarily within neuropil fibers. Glutamic acid, which was also found in high relative abundance and is a precursor of GABA, is known as a spawning inhibitor in seastars, and as such was tested for inhibition of ovulation ex-vivo which resulted in complete inhibition of oocyte maturation and ovulation induced by 1-Methyladenine. These findings not only advance our knowledge of echinoderm neural signaling processes but also identify potential targets for developing novel approaches for COTS biocontrol.

9.
J Proteomics ; 165: 61-68, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28577918

RESUMO

Outbreaks of Crown-of-Thorns Starfish (COTS; Acanthaster planci) are a major cause of destruction of coral communities on the Australian Great Barrier Reef. While factors relating to population explosions and the social interactions of COTS have been well studied, little is known about the neural mechanisms underlying COTS physiology and behaviour. One of the major classes of chemical messengers that regulate physiological and behavioural processes in animals is the neuropeptides. Here, we have analysed COTS genome and transcriptome sequence data to identify neuropeptide precursor proteins in this species. A total of 48 neuropeptide precursors were identified, including homologs of neuropeptides that are evolutionarily conserved throughout the Bilateria, and others that are novel. Proteomic mass spectrometry was employed to confirm the presence of neuropeptides in extracts of radial nerve cords. These transcriptomic and proteomic resources provide a foundation for functional studies that will enable a better understanding of COTS physiology and behaviour, and may facilitate development of novel population biocontrol methods. SIGNIFICANCE: The Crown-of-Thorns Starfish (COTS) is one of the primary factors leading to coral loss on the Great Barrier Reef, Australia. Our combined gene and proteomic findings of this study reveal the COTS neuropeptidome, including both echinoderm-like neuropeptides and novel putative neuropeptides. This represents the most comprehensive neuropeptidome for an echinoderm, contributing to the evolving knowledge of the COTS molecular neurobiology that may assist towards the development of biocontrol methods.


Assuntos
Neuropeptídeos/análise , Proteômica/métodos , Estrelas-do-Mar/química , Animais , Antozoários , Austrália , Genoma , Espectrometria de Massas , Estrelas-do-Mar/fisiologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa