RESUMO
Scheffersomyces stipitis is a yeast that robustly ferments the 5-carbon sugar xylose, making the yeast a valuable candidate for lignocellulosic ethanol fermentation. However, the non-canonical codon usage of S. stipitis is an obstacle for implementing molecular tools that were developed for other yeast species, thereby limiting the molecular toolset available for S. stipitis. Here, we developed a series of molecular tools for S. stipitis including BLINCAR, a Bio-Luminescent Indicator that is Nullified by Cas9-Actuated Recombination, which can be used repeatedly to add different exogenous DNA payloads to the wild-type S. stipitis genome or used repeatedly to remove multiple native S. stipitis genes from the wild-type genome. Through the use of BLINCAR tools, one first produces antibiotic-resistant, bioluminescent colonies of S. stipitis whose bioluminescence highlights those clones that have been genetically modified; then second, once candidate clones have been confirmed, one uses a transient Cas9-producing plasmid to nullify the antibiotic resistance and bioluminescent markers from the prior introduction, thereby producing non-bioluminescent colonies that highlight those clones which have been re-sensitized to the antibiotic and are therefore susceptible to another round of BLINCAR implementation. IMPORTANCE Cellulose and hemicellulose that comprise a large portion of sawdust, leaves, and grass can be valuable sources of fermentable sugars for ethanol production. However, some of the sugars liberated from hemicellulose (like xylose) are not easily fermented using conventional glucose-fermenting yeast like Saccharomyces cerevisiae, so engineering robust xylose-fermenting yeast that is not inhibited by other components liberated from cellulose/hemicellulose will be important for maximizing yield and making lignocellulosic ethanol fermentation cost efficient. The yeast Scheffersomyces stipitis is one such yeast that can ferment xylose; however, it possesses several barriers to genetic manipulation. It is difficult to transform, has only a few antibiotic resistance markers, and uses an alternative genetic code from most other organisms. We developed a genetic toolset for S. stipitis that lowers these barriers and allows a user to deliver and/or delete multiple genetic elements to/from the wild-type genome, thereby expanding S. stipitis's potential.
Assuntos
Saccharomyces cerevisiae , Xilose , Saccharomyces cerevisiae/genética , Sistemas CRISPR-Cas , Celulose , Etanol , AntibacterianosRESUMO
The polysaccharide capsule of Cryptococcus neoformans is the primary virulence factor and one of the most commonly studied aspects of this pathogenic yeast. Capsule size can vary widely between strains, has the ability to grow rapidly when introduced to stressful or low nutrient conditions, and has been positively correlated with strain virulence. For these reasons, the size of the capsule is of great interest to C. neoformans researchers. The growth of the C. neoformans capsule is induced during phenotypic testing to help understand the effects of different treatments on the yeast or size differences between strains. Here we describe one of the standard methods of capsule induction and compare two accepted methods of staining and measuring capsule diameter: (i) India ink, a negative stain, used in conjunction with conventional light microscopy and (ii) co-staining with fluorescent dyes of both the cell wall and capsule followed by confocal microscopy. Finally, we show how measurement of capsule diameter from India ink-stained samples can be automated using computational image analysis.