Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 84(12): 7871-7882, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117564

RESUMO

Trichloroacetimidates are useful reagents for the synthesis of esters under mild conditions that do not require an exogenous promoter. These conditions avoid the undesired decomposition of substrates with sensitive functional groups that are often observed with the use of strong Lewis or Brønsted acids. With heating, these reactions have been extended to benzyl esters without electron-donating groups. These inexpensive and convenient methods should find application in the formation of esters in complex substrates.


Assuntos
Acetamidas/química , Cloroacetatos/química , Elétrons , Ésteres/química , Ácidos Carboxílicos/química
2.
iScience ; 26(10): 107804, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37720099

RESUMO

Human pluripotent stem cell (hPSC)-derived tissues can be used to model diseases in cell types that are challenging to harvest and study at-scale, such as neutrophils. Neutrophil dysregulation, specifically neutrophil extracellular trap (NET) formation, plays a critical role in the prognosis and progression of multiple diseases, including COVID-19. While hPSCs can generate limitless neutrophils (iNeutrophils) to study these processes, current differentiation protocols generate heterogeneous cultures of granulocytes and precursors. Here, we describe a method to improve iNeutrophil differentiations through the deletion of GATA1. GATA1 knockout (KO) iNeutrophils are nearly identical to primary neutrophils in form and function. Unlike wild-type iNeutrophils, GATA1 KO iNeutrophils generate NETs in response to the physiologic stimulant lipopolysaccharide, suggesting they are a more accurate model when performing NET inhibitor screens. Furthermore, through deletion of CYBB, we demonstrate that GATA1 KO iNeutrophils are a powerful tool in determining involvement of a given protein in NET formation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa