Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Physiol Rev ; 104(3): 1409-1459, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517040

RESUMO

The collective efforts of scientists over multiple decades have led to advancements in molecular and cellular biology-based technologies including genetic engineering and animal cloning that are now being harnessed to enhance the suitability of pig organs for xenotransplantation into humans. Using organs sourced from pigs with multiple gene deletions and human transgene insertions, investigators have overcome formidable immunological and physiological barriers in pig-to-nonhuman primate (NHP) xenotransplantation and achieved prolonged pig xenograft survival. These studies informed the design of Revivicor's (Revivicor Inc, Blacksburg, VA) genetically engineered pigs with 10 genetic modifications (10 GE) (including the inactivation of 4 endogenous porcine genes and insertion of 6 human transgenes), whose hearts and kidneys have now been studied in preclinical human xenotransplantation models with brain-dead recipients. Additionally, the first two clinical cases of pig-to-human heart xenotransplantation were recently performed with hearts from this 10 GE pig at the University of Maryland. Although this review focuses on xenotransplantation of hearts and kidneys, multiple organs, tissues, and cell types from genetically engineered pigs will provide much-needed therapeutic interventions in the future.


Assuntos
Animais Geneticamente Modificados , Transplante Heterólogo , Animais , Transplante Heterólogo/métodos , Humanos , Suínos , Engenharia Genética/métodos , Transplante de Coração/métodos
2.
Int J Mol Sci ; 25(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39125597

RESUMO

The water-soluble vitamin, vitamin B12, also known as cobalamin, plays a crucial role in cellular metabolism, particularly in DNA synthesis, methylation, and mitochondrial functionality. Its deficiency can lead to hematological and neurological disorders; however, the manifestation of these clinical outcomes is relatively late. It leads to difficulties in the early diagnosis of vitamin B12 deficiency. A prolonged lack of vitamin B12 may have severe consequences including increased morbidity to neurological and cardiovascular diseases. Beyond inadequate dietary intake, vitamin B12 deficiency might be caused by insufficient bioavailability, blood transport disruptions, or impaired cellular uptake and metabolism. Despite nearly 70 years of knowledge since the isolation and characterization of this vitamin, there are still gaps in understanding its metabolic pathways. Thus, this review aims to compile current knowledge about the crucial proteins necessary to efficiently accumulate and process vitamin B12 in humans, presenting these systems as a multi-protein network. The epidemiological consequences, diagnosis, and treatment of vitamin B12 deficiency are also highlighted. We also discuss clinical warnings of vitamin B12 deficiency based on the ongoing test of specific moonlighting proteins engaged in vitamin B12 metabolic pathways.


Assuntos
Deficiência de Vitamina B 12 , Vitamina B 12 , Humanos , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/metabolismo , Redes e Vias Metabólicas , Animais
3.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397036

RESUMO

Nicotinamide (NA) derivatives play crucial roles in various biological processes, such as inflammation, regulation of the cell cycle, and DNA repair. Recently, we proposed that 4-pyridone-3-carboxamide-1-ß-D-ribonucleoside (4PYR), an unusual derivative of NA, could be classified as an oncometabolite in bladder, breast, and lung cancer. In this study, we investigated the relations between NA metabolism and the progression, recurrence, metastasis, and survival of patients diagnosed with different histological subtypes of renal cell carcinoma (RCC). We identified alterations in plasma NA metabolism, particularly in the clear cell RCC (ccRCC) subtype, compared to papillary RCC, chromophobe RCC, and oncocytoma. Patients with ccRCC also exhibited larger tumor sizes and elevated levels of diagnostic serum biomarkers, such as hsCRP concentration and ALP activity, which were positively correlated with the plasma 4PYR. Notably, 4PYR levels were elevated in advanced stages of ccRCC cancer and were associated with a highly aggressive phenotype of ccRCC. Additionally, elevated concentrations of 4PYR were related to a higher likelihood of mortality, recurrence, and particularly metastasis in ccRCC. These findings are consistent with other studies, suggesting that NA metabolism is accelerated in RCC, leading to abnormal concentrations of 4PYR. This supports the concept of 4PYR as an oncometabolite and a potential prognostic factor in the ccRCC subtype.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Piridonas , Ribonucleosídeos , Humanos , Nucleosídeos/metabolismo , Niacinamida
4.
Semin Cancer Biol ; 86(Pt 2): 93-100, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36096316

RESUMO

The energy metabolism of tumor cells is considered one of the hallmarks of cancer because it is different from normal cells and mainly consists of aerobic glycolysis, fatty acid oxidation, and glutaminolysis. It is about one hundred years ago since Warburg observed that cancer cells prefer aerobic glycolysis even in normoxic conditions, favoring their high proliferation rate. A pivotal enzyme driving this phenomenon is lactate dehydrogenase (LDH), and this review describes prognostic and therapeutic opportunities associated with this enzyme, focussing on tumors with limited therapeutic strategies and life expectancy (i.e., pancreatic and thoracic cancers). Expression levels of LDH-A in pancreatic cancer tissues correlate with clinicopathological features: LDH-A is overexpressed during pancreatic carcinogenesis and showed significantly higher expression in more aggressive tumors. Similarly, LDH levels are a marker of negative prognosis in patients with both adenocarcinoma or squamous cell lung carcinoma, as well as in malignant pleural mesothelioma. Additionally, serum LDH levels may play a key role in the clinical management of these diseases because they are associated with tissue damage induced by tumor burden. Lastly, we discuss the promising results of strategies targeting LDH as a treatment strategy, reporting recent preclinical and translational studies supporting the use of LDH-inhibitors in combinations with current/novel chemotherapeutics that can synergistically target the oxygenated cells present in the tumor.


Assuntos
Metabolismo Energético , Lactato Desidrogenase 5 , Neoplasias Pancreáticas , Neoplasias Torácicas , Humanos , Glicólise/fisiologia , Isoenzimas/metabolismo , L-Lactato Desidrogenase/metabolismo , Lactato Desidrogenase 5/biossíntese , Neoplasias Pulmonares/metabolismo , Neoplasias Pancreáticas/metabolismo , Mesotelioma/metabolismo , Neoplasias Pleurais/metabolismo , Neoplasias Torácicas/metabolismo
5.
Cell Mol Neurobiol ; 43(8): 4245-4259, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801200

RESUMO

Hypercholesterolemia affects the neurovascular unit, including the cerebral blood vessel endothelium. Operation of this system, especially in the context of energy metabolism, is controlled by extracellular concentration of purines, regulated by ecto-enzymes, such as e-NTPDase-1/CD39, ecto-5'-NT/CD73, and eADA. We hypothesize that hypercholesterolemia, via modulation of the activity of nucleotide metabolism-regulating ecto-enzymes, deteriorates glycolytic efficiency and energy metabolism of endothelial cells, which may potentially contribute to development of neurodegenerative processes. We aimed to determine the effect of hypercholesterolemia on the concentration of purine nucleotides, glycolytic activity, and activity of ecto-enzymes in the murine brain microvascular endothelial cells (mBMECs). We used 3-month-old male LDLR-/-/Apo E-/- double knockout mice to model hypercholesterolemia and atherosclerosis. The age-matched wild-type C57/BL6 mice were a control group. The intracellular concentration of ATP and NAD and extracellular activity of the ecto-enzymes were measured by HPLC. The glycolytic function of mBMECs was assessed by means of the extracellular acidification rate (ECAR) using the glycolysis stress test. The results showed an increased activity of ecto-5'-NT and eADA in mBMECs of the hypercholesterolemic mice, but no differences in intracellular concentration of ATP, NAD, and ECAR between the hypercholesterolemic and control groups. The changed activity of ecto-5'-NT and eADA leads to increased purine nucleotides turnover and a shift in their concentration balance towards adenosine and inosine in the extracellular space. However, no changes in the energetic metabolism of the mBMECs are reported. Our results confirm the influence of hypercholesterolemia on regulation of purine nucleotides metabolism, which may impair the function of the cerebral vascular endothelium. The effect of hypercholesterolemia on the murine brain microvascular endothelial cells (mBMECs). An increased activity of ecto-5'-NT and eADA in mBMECs of the LDLR-/-/Apo E-/- mice leads to a shift in the concentration balance towards adenosine and inosine in the extracellular space with no differences in intracellular concentration of ATP. Figure was created with Biorender.com.


Assuntos
Hipercolesterolemia , Masculino , Camundongos , Animais , Células Endoteliais/metabolismo , NAD/metabolismo , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Encéfalo/metabolismo , Camundongos Knockout , Endotélio/metabolismo , Inosina , Apolipoproteínas E , 5'-Nucleotidase/metabolismo
6.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982805

RESUMO

Chronic kidney disease (CKD) is associated with elevated plasma fibrinogen concentration. However, the underlying molecular mechanism for elevated plasma fibrinogen concentration in CKD patients has not yet been clarified. We recently found that HNF1α was significantly upregulated in the liver of chronic renal failure (CRF) rats, an experimental model of CKD in patients. Given that the promoter region of the fibrinogen gene possesses potential binding sites for HNF1α, we hypothesized that the upregulation of HNF1α can increase fibrinogen gene expression and consequently plasma fibrinogen concentration in the experimental model of CKD. Here, we found the coordinated upregulation of Aα-chain fibrinogen and Hnfα gene expression in the liver and elevated plasma fibrinogen concentrations in CRF rats, compared with pair-fed and control animals. Liver Aα-chain fibrinogen and HNF1α mRNAs levels correlated positively with (a) liver and plasma fibrinogen levels and (b) liver HNF1α protein levels. The positive correlation between (a) liver Aα-chain fibrinogen mRNA level, (b) liver Aα-chain fibrinogen level, and (c) serum markers of renal function suggest that fibrinogen gene transcription is closely related to the progression of kidney disease. Knockdown of Hnfα in the HepG2 cell line by small interfering RNA (siRNA) led to a decrease in fibrinogen mRNA levels. Clofibrate, an anti-lipidemic drug that reduces plasma fibrinogen concentration in humans, decreased both HNF1α and Aα-chain fibrinogen mRNAs levels in (a) the liver of CRF rats and (b) HepG2 cells. The obtained results suggest that (a) an elevated level of liver HNF1α can play an important role in the upregulation of fibrinogen gene expression in the liver of CRF rats, leading to an elevated concentration of plasma fibrinogen, a protein related to the risk of cardiovascular disease in CKD patients, and (b) fibrates can decrease plasma fibrinogen concentration through inhibition of HNF1α gene expression.


Assuntos
Fibrinogênio , Falência Renal Crônica , Ratos , Humanos , Animais , Fibrinogênio/genética , Fibrinogênio/metabolismo , Fígado/metabolismo , Falência Renal Crônica/genética , Falência Renal Crônica/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/metabolismo , Expressão Gênica , Fatores Nucleares de Hepatócito/genética , Fatores Nucleares de Hepatócito/metabolismo
7.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298116

RESUMO

Malignant Pleural Mesothelioma (MPM) is a rare neoplasm that is typically diagnosed in a locally advanced stage, making it not eligible for radical surgery and requiring systemic treatment. Chemotherapy with platinum compounds and pemetrexed has been the only approved standard of care for approximately 20 years, without any relevant therapeutic advance until the introduction of immune checkpoint inhibitors. Nevertheless, the prognosis remains poor, with an average survival of only 18 months. Thanks to a better understanding of the molecular mechanisms underlying tumor biology, targeted therapy has become an essential therapeutic option in several solid malignancies. Unfortunately, most of the clinical trials evaluating potentially targeted drugs for MPM have failed. This review aims to present the main findings of the most promising targeted therapies in MPM, and to explore possible reasons leading to treatments failures. The ultimate goal is to determine whether there is still a place for continued preclinical/clinical research in this area.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Mesotelioma Maligno/tratamento farmacológico , Mesotelioma/patologia , Neoplasias Pulmonares/patologia , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/patologia , Pemetrexede , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
8.
Int J Mol Sci ; 24(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37175477

RESUMO

Malignant mesothelioma (MM) is a highly aggressive and resistant tumor. The prognostic role of key effectors of glycolytic metabolism in MM prompted our studies on the cytotoxicity of new inhibitors of glucose transporter type 1 (GLUT-1) and lactate dehydrogenase-A (LDH-A) in relation to ATP/NAD+ metabolism, glycolysis and mitochondrial respiration. The antiproliferative activity of GLUT-1 (PGL13, PGL14) and LDH-A (NHI-1, NHI-2) inhibitors, alone and in combination, were tested with the sulforhodamine-B assay in peritoneal (MESO-II, STO) and pleural (NCI-H2052 and NCI-H28) MM and non-cancerous (HMEC-1) cells. Effects on energy metabolism were measured by both analysis of nucleotides using RP-HPLC and evaluation of glycolysis and respiration parameters using a Seahorse Analyzer system. All compounds reduced the growth of MM cells in the µmolar range. Interestingly, in H2052 cells, PGL14 decreased ATP concentration from 37 to 23 and NAD+ from 6.5 to 2.3 nmol/mg protein. NHI-2 reduced the ATP/ADP ratio by 76%. The metabolic effects of the inhibitors were stronger in pleural MM and in combination, while in HMEC-1 ATP reduction was 10% lower compared to that of the H2052 cells, and we observed a minor influence on mitochondrial respiration. To conclude, both inhibitors showed cytotoxicity in MM cells, associated with a decrease in ATP and NAD+, and were synergistic in the cells with the highest metabolic modulation. This underlines cellular energy metabolism as a potential target for combined treatments in selected cases of MM.


Assuntos
Mesotelioma Maligno , Mesotelioma , Humanos , Lactato Desidrogenase 5 , Proteínas Facilitadoras de Transporte de Glucose , NAD , Linhagem Celular Tumoral , Glicólise , Trifosfato de Adenosina , Glucose , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia
9.
Curr Issues Mol Biol ; 44(10): 4877-4887, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36286046

RESUMO

RNS60 is a physically modified saline solution hypothesized to contain oxygen nanobubbles. It has been reported to reduce ischemia/reperfusion injury in a pig model of acute myocardial infarction. We investigated the effects of RNS60 during cardiac hypoxia in mice and as an additive to cardioplegic solution in rat hearts. ApoE-/-LDLr-/- mice were treated by intravenous injection of RNS60 or saline as a control while monitoring the ECG and post-hypoxic serum release of troponin T and creatine kinase activity. Hearts infused with Custodiol containing 10% RNS60 or saline as the control were subjected to 4 h of 4 °C preservation, followed by an assessment of myocardial metabolites, purine release, and mechanical function. RNS60 attenuated changes in the ECG STU area during hypoxia, while the troponin T concentration and creatine kinase activity were significantly higher in the serum of the controls. During reperfusion after 4 h of cold ischemia, the Custodiol/RNS60-treated hearts had about 30% lower LVEDP and better dp/dtmax and dp/dtmin together with a decreased release of purine catabolites vs. the controls. The myocardial ATP, total adenine nucleotides, and phosphocreatine concentrations were higher in the RNS60-treated hearts. This study indicates that RNS60 enhances cardioprotection in experimental myocardial hypoxia and under conditions of cardioplegic arrest. Improved cardiac energetics are involved in the protective effect, but complete elucidation of the mechanism requires further study.

10.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012158

RESUMO

Chronic kidney disease (CKD) is associated with low-grade inflammation that activates nuclear factor-κB (NF-κB), which upregulates the expression of numerous NF-κB responsive genes, including the genes encoding IL-6, ICAM-1, VCAM-1, and MCP-1. Herein, we found the coordinated overexpression of genes encoding RelA/p65 (a subunit of NF-κB) and HNF1α in the livers of chronic renal failure (CRF) rats-an experimental model of CKD. The coordinated overexpression of RelA/p65 and HNF1α was associated with a significant increase in IL-6, ICAM-1, VCAM-1, and MCP-1 gene expressions. A positive correlation between liver RelA/p65 mRNA levels and a serum concentration of creatinine and BUN suggest that RelA/p65 gene transcription is tightly related to the progression of renal failure. The knockdown of HNF1α in the HepG2 cell line by siRNA led to a decrease in Rel A/p65 mRNA levels. This was associated with a decrease in IL-6, ICAM-1, VCAM-1, and MCP-1 gene expressions. The simultaneous repression of HNF-1α and RelA/p65 by clofibrate is tightly associated with the downregulation of IL-6, ICAM-1, VCAM-1, and MCP-1 gene expression. In conclusion, our findings suggest that NF-κB could be a downstream component of the HNF1α-initiated signaling pathway in the livers of CRF rats.


Assuntos
NF-kappa B , Insuficiência Renal Crônica , Animais , Linhagem Celular Tumoral , Fator 1-alfa Nuclear de Hepatócito , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/genética , Fígado/metabolismo , Modelos Teóricos , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/metabolismo , Ratos , Insuficiência Renal Crônica/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232794

RESUMO

Dyslipidemia triggers many severe pathologies, including atherosclerosis and chronic inflammation. Several lines of evidence, including our studies, have suggested direct effects of dyslipidemia on cardiac energy metabolism, but details of these effects are not clear. This study aimed to investigate how mild dyslipidemia affects cardiac mitochondria function and vascular nucleotide metabolism. The analyses were performed in 3- and 6-month-old knock-out mice for low-density lipoprotein receptor (Ldlr-/-) and compared to wild-type C57Bl/6J mice (WT). Cardiac isolated mitochondria function was analyzed using Seahorse metabolic flux analyzer. The mechanical function of the heart was measured using echocardiography. The levels of fusion, fission, and mitochondrial biogenesis proteins were determined by ELISA kits, while the cardiac intracellular nucleotide concentration and vascular pattern of nucleotide metabolism ecto-enzymes were analyzed using reverse-phase high-performance liquid chromatography. We revealed the downregulation of mitochondrial complex I, together with a decreased activity of citrate synthase (CS), reduced levels of nuclear respiratory factor 1 and mitochondrial fission 1 protein, as well as lower intracellular adenosine and guanosine triphosphates' pool in the hearts of 6-month Ldlr-/- mice vs. age-matched WT. The analysis of vascular ecto-enzyme pattern revealed decreased rate of extracellular adenosine monophosphate hydrolysis and increased ecto-adenosine deaminase activity (eADA) in 6-month Ldlr-/- vs. WT mice. No changes were observed in echocardiography parameters in both age groups of Ldlr-/- mice. Younger hyperlipidemic mice revealed no differences in cardiac mitochondria function, CS activity, intracellular nucleotides, mitochondrial biogenesis, and dynamics but exhibited minor changes in vascular eADA activity vs. WT. This study revealed that dysfunction of cardiac mitochondria develops during prolonged mild hyperlipidemia at the time point corresponding to the formation of early vascular alterations.


Assuntos
Adenosina Desaminase , Hiperlipidemias , Adenosina/metabolismo , Adenosina Desaminase/metabolismo , Monofosfato de Adenosina/metabolismo , Animais , Citrato (si)-Sintase , Guanosina , Hiperlipidemias/metabolismo , Lipoproteínas LDL , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Fator 1 Nuclear Respiratório , Nucleotídeos/metabolismo
12.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077285

RESUMO

LVAD therapy is an effective rescue in acute and especially chronic cardiac failure. In several scenarios, it provides a platform for regeneration and sustained myocardial recovery. While unloading seems to be a key element, pharmacotherapy may provide powerful tools to enhance effective cardiac regeneration. The synergy between LVAD support and medical agents may ensure satisfying outcomes on cardiomyocyte recovery followed by improved quality and quantity of patient life. This review summarizes the previous and contemporary strategies for combining LVAD with pharmacotherapy and proposes new therapeutic targets. Regulation of metabolic pathways, enhancing mitochondrial biogenesis and function, immunomodulating treatment, and stem-cell therapies represent therapeutic areas that require further experimental and clinical studies on their effectiveness in combination with mechanical unloading.


Assuntos
Insuficiência Cardíaca , Coração Auxiliar , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Humanos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo
13.
Int J Mol Sci ; 23(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35628582

RESUMO

The accumulation of specific metabolic intermediates is known to promote cancer progression. We analyzed the role of 4-pyridone-3-carboxamide-1-ß-D-ribonucleoside (4PYR), a nucleotide metabolite that accumulates in the blood of cancer patients, using the 4T1 murine in vivo breast cancer model, and cultured cancer (4T1) and endothelial cells (ECs) for in vitro studies. In vivo studies demonstrated that 4PYR facilitated lung metastasis without affecting primary tumor growth. In vitro studies demonstrated that 4PYR affected extracellular adenine nucleotide metabolism and the intracellular energy status in ECs, shifting catabolite patterns toward the accumulation of extracellular inosine, and leading to the increased permeability of lung ECs. These changes prevailed over the direct effect of 4PYR on 4T1 cells that reduced their invasive potential through 4PYR-induced modulation of the CD73-adenosine axis. We conclude that 4PYR is an oncometabolite that affects later stages of the metastatic cascade by acting specifically through the regulation of EC permeability and metabolic controls of inflammation.


Assuntos
Neoplasias da Mama , Ribonucleosídeos , Animais , Neoplasias da Mama/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Camundongos , Nucleosídeos/metabolismo , Nucleotídeos/metabolismo , Piridonas , Ribonucleosídeos/farmacologia
14.
J Cell Mol Med ; 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34142751

RESUMO

Nicotinamide adenine dinucleotide (NAD+ ) is crucial for cell energy metabolism and many signalling processes. Recently, we proved the role of ecto-enzymes in controlling adenine nucleotide-dependent pathways during calcific aortic valve disease (CAVD). This study aimed to investigate extracellular hydrolysis of NAD+ and mononucleotide nicotinamide (NMN) in aortic valves and aorta fragments of CAVD patients and on the inner aortic surface of ecto-5'-nucleotidase knockout mice (CD73-/-). Human non-stenotic valves (n = 10) actively converted NAD+ and NMN via both CD73 and NAD+ -glycohydrolase (CD38) according to our analysis with RP-HPLC and immunofluorescence. In stenotic valves (n = 50), due to reduced CD73 activity, NAD+ was degraded predominantly by CD38 and additionally by ALP and eNPP1. CAVD patients had significantly higher hydrolytic rates of NAD+ (0.81 ± 0.07 vs 0.56 ± 0.10) and NMN (1.12 ± 0.10 vs 0.71 ± 0.08 nmol/min/cm2 ) compared with controls. CD38 was also primarily engaged in human vascular NAD+ metabolism. Studies using specific ecto-enzyme inhibitors and CD73-/- mice confirmed that CD73 is not the only enzyme involved in NAD+ and NMN hydrolysis and that CD38 had a significant contribution to these pathways. Modifications of extracellular NAD+ and NMN metabolism in aortic valve cells may be particularly important in valve pathology and could be a potential therapeutic target.

15.
J Transl Med ; 19(1): 6, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407555

RESUMO

BACKGROUND: Dyslipidaemia is a major risk factor for atherosclerosis and cardiovascular diseases. The molecular mechanisms that translate dyslipidaemia into atherogenesis and reliable markers of its progression are yet to be fully elucidated. To address this issue, we conducted a comprehensive metabolomic and proteomic analysis in an experimental model of dyslipidaemia and in patients with familial hypercholesterolemia (FH). METHODS: Liquid chromatography/mass spectrometry (LC/MS) and immunoassays were used to find out blood alterations at metabolite and protein levels in dyslipidaemic ApoE-/-/LDLR-/- mice and in FH patients to evaluate their human relevance. RESULTS: We identified 15 metabolites (inhibitors and substrates of nitric oxide synthase (NOS), low-molecular-weight antioxidants (glutamine, taurine), homocysteine, methionine, 1-methylnicotinamide, alanine and hydroxyproline) and 9 proteins (C-reactive protein, proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III, soluble intercellular adhesion molecule-1, angiotensinogen, paraoxonase-1, fetuin-B, vitamin K-dependent protein S and biglycan) that differentiated FH patients from healthy controls. Most of these changes were consistently found in dyslipidaemic mice and were further amplified if mice were fed an atherogenic (Western or low-carbohydrate, high-protein) diet. CONCLUSIONS: The alterations highlighted the involvement of an immune-inflammatory response system, oxidative stress, hyper-coagulation and impairment in the vascular function/regenerative capacity in response to dyslipidaemia that may also be directly engaged in development of atherosclerosis. Our study further identified potential biomarkers for an increased risk of atherosclerosis that may aid in clinical diagnosis or in the personalized treatment.


Assuntos
Aterosclerose , Dislipidemias , Hiperlipoproteinemia Tipo II , Animais , Aterosclerose/complicações , Dislipidemias/complicações , Humanos , Camundongos , Pró-Proteína Convertase 9 , Proteômica , Receptores de LDL
16.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207177

RESUMO

Huntington's disease (HD) is a multi-system disorder that is caused by expanded CAG repeats within the exon-1 of the huntingtin (HTT) gene that translate to the polyglutamine stretch in the HTT protein. HTT interacts with the proteins involved in gene transcription, endocytosis, and metabolism. HTT may also directly or indirectly affect purine metabolism and signaling. We aimed to review existing data and discuss the modulation of the purinergic system as a new therapeutic target in HD. Impaired intracellular nucleotide metabolism in the HD affected system (CNS, skeletal muscle and heart) may lead to extracellular accumulation of purine metabolites, its unusual catabolism, and modulation of purinergic signaling. The mechanisms of observed changes might be different in affected systems. Based on collected findings, compounds leading to purine and ATP pool reconstruction as well as purinergic receptor activity modulators, i.e., P2X7 receptor antagonists, may be applied for HD treatment.


Assuntos
Doença de Huntington/metabolismo , Nucleotídeos de Purina/metabolismo , Transdução de Sinais , AMP Desaminase/antagonistas & inibidores , AMP Desaminase/metabolismo , Animais , Inibidores Enzimáticos/uso terapêutico , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Fármacos Neuroprotetores/uso terapêutico
17.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199004

RESUMO

Guanosine (Guo) is a nucleotide metabolite that acts as a potent neuromodulator with neurotrophic and regenerative properties in neurological disorders. Under brain ischemia or trauma, Guo is released to the extracellular milieu and its concentration substantially raises. In vitro studies on brain tissue slices or cell lines subjected to ischemic conditions demonstrated that Guo counteracts destructive events that occur during ischemic conditions, e.g., glutaminergic excitotoxicity, reactive oxygen and nitrogen species production. Moreover, Guo mitigates neuroinflammation and regulates post-translational processing. Guo asserts its neuroprotective effects via interplay with adenosine receptors, potassium channels, and excitatory amino acid transporters. Subsequently, guanosine activates several prosurvival molecular pathways including PI3K/Akt (PI3K) and MEK/ERK. Due to systemic degradation, the half-life of exogenous Guo is relatively low, thus creating difficulty regarding adequate exogenous Guo distribution. Nevertheless, in vivo studies performed on ischemic stroke rodent models provide promising results presenting a sustained decrease in infarct volume, improved neurological outcome, decrease in proinflammatory events, and stimulation of neuroregeneration through the release of neurotrophic factors. In this comprehensive review, we discuss molecular signaling related to Guo protection against brain ischemia. We present recent advances, limitations, and prospects in exogenous guanosine therapy in the context of ischemic stroke.


Assuntos
Guanosina/farmacologia , AVC Isquêmico/metabolismo , Fármacos Neuroprotetores/farmacologia , Animais , Biomarcadores , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Humanos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/etiologia , AVC Isquêmico/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais
18.
Int J Mol Sci ; 22(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916440

RESUMO

Several lines of evidence suggest that altered adenosine deaminase (ADA) activity, especially its ADA2 iso-enzyme, is associated with malignant breast cancer (BC) development. Triple-negative breast cancer (TNBC) is currently the most challenging BC subtype due to its metastatic potential and recurrence. Herein, we analyzed the sources of ADA iso-enzymes in TNBC by investigating the effects of cell-to-cell interactions between TNBC cells, macrophages, lymphocytes, and endothelial cells. We also examined the potential relationship between ADA activity and cancer progression in TNBC patients. In vitro analyses demonstrated that the interactions of immune and endothelial cells with MDA-MB-231 triple negative BC cells modulated their extracellular adenosine metabolism pattern. However, they caused an increase in the ADA1 activity, and did not alter ADA2 activity in cancer cells. In turn, the co-culture of MDA-MB-231 cells with THP-1 monocyte/macrophages, Jurkat cells, and human lung microvascular endothelial cells (HULEC) caused the increase in ADA2 activity on THP-1 cells and ADA1 activity on Jurkat cells and HULEC. Clinical sample analysis revealed that TNBC patients had higher plasma ADA2 activities and lower ADA1/ADA2 ratio at advanced stages of cancer development than in the initial stages, while patients with hormone receptor positive, HER2 negative (HR+HER2-), and triple positive (HR+HER2+) breast cancers at the same stages showed opposite trends. TNBC patients also demonstrated positive associations between plasma ADA2 activity and pro-tumor M2 macrophage markers, as well as between ADA1 activity and endothelial dysfunction or inflammatory parameters. The analysis of TNBC patients, at 6 and 12 months following cancer treatment, did not showed significant changes in plasma ADA activities and macrophage polarization markers, which may be the cause of their therapeutic failure. We conclude that alterations in both ADA iso-enzymes can play a role in breast cancer development and progression by the modulation of extracellular adenosine-dependent pathways. Additionally, the changes in ADA2 activity that may contribute to the differentiation of macrophages into unfavorable pro-tumor M2 phenotype deserve special attention in TNBC.


Assuntos
Adenosina Desaminase/sangue , Biomarcadores Tumorais/sangue , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Macrófagos/enzimologia , Neoplasias de Mama Triplo Negativas/sangue , Adulto , Feminino , Humanos , Células Jurkat , Macrófagos/patologia , Pessoa de Meia-Idade , Células THP-1 , Neoplasias de Mama Triplo Negativas/patologia
19.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830135

RESUMO

Dyslipidemia is commonly linked to skeletal muscle dysfunction, accumulation of intramyocellular lipids, and insulin resistance. However, our previous research indicated that dyslipidemia in apolipoprotein E and low-density lipoprotein receptor double knock-out mice (ApoE/LDLR -/-) leads to improvement of exercise capacity. This study aimed to investigate in detail skeletal muscle function and metabolism in these dyslipidemic mice. We found that ApoE/LDLR -/- mice showed an increased grip strength as well as increased troponins, and Mhc2 levels in skeletal muscle. It was accompanied by the increased skeletal muscle mitochondria numbers (judged by increased citrate synthase activity) and elevated total adenine nucleotides pool. We noted increased triglycerides contents in skeletal muscles and increased serum free fatty acids (FFA) levels in ApoE/LDLR -/- mice. Importantly, Ranolazine mediated inhibition of FFA oxidation in ApoE/LDLR -/- mice led to the reduction of exercise capacity and total adenine nucleotides pool. Thus, this study demonstrated that increased capacity for fatty acid oxidation, an adaptive response to dyslipidemia leads to improved cellular energetics that translates to increased skeletal muscle strength and contributes to increased exercise capacity in ApoE/LDLR -/- mice.


Assuntos
Dislipidemias/fisiopatologia , Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Força Muscular/fisiologia , Nucleotídeos de Adenina/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Glicemia/metabolismo , Dislipidemias/genética , Dislipidemias/metabolismo , Ácidos Graxos/sangue , Resistência à Insulina/genética , Lipídeos/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Força Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Cadeias Pesadas de Miosina/metabolismo , Oxirredução/efeitos dos fármacos , Ranolazina/farmacologia , Receptores de LDL/deficiência , Receptores de LDL/genética , Troponina/metabolismo
20.
Br J Cancer ; 123(4): 644-656, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32493992

RESUMO

BACKGROUND: Expression of proton-coupled folate transporter (PCFT) is associated with survival of mesothelioma patients treated with pemetrexed, and is reduced by hypoxia, prompting studies to elucidate their correlation. METHODS: Modulation of glycolytic gene expression was evaluated by PCR arrays in tumour cells and primary cultures growing under hypoxia, in spheroids and after PCFT silencing. Inhibitors of lactate dehydrogenase (LDH-A) were tested in vitro and in vivo. LDH-A expression was determined in tissue microarrays of radically resected malignant pleural mesothelioma (MPM, N = 33) and diffuse peritoneal mesothelioma (DMPM, N = 56) patients. RESULTS: Overexpression of hypoxia marker CAIX was associated with low PCFT expression and decreased MPM cell growth inhibition by pemetrexed. Through integration of PCR arrays in hypoxic cells and spheroids and following PCFT silencing, we identified the upregulation of LDH-A, which correlated with shorter survival of MPM and DMPM patients. Novel LDH-A inhibitors enhanced spheroid disintegration and displayed synergistic effects with pemetrexed in MPM and gemcitabine in DMPM cells. Studies with bioluminescent hypoxic orthotopic and subcutaneous DMPM athymic-mice models revealed the marked antitumour activity of the LDH-A inhibitor NHI-Glc-2, alone or combined with gemcitabine. CONCLUSIONS: This study provides novel insights into hypoxia/PCFT-dependent chemoresistance, unravelling the potential prognostic value of LDH-A, and demonstrating the preclinical activity of LDH-A inhibitors.


Assuntos
Antígenos de Neoplasias/genética , Anidrase Carbônica IX/genética , Inibidores Enzimáticos/administração & dosagem , L-Lactato Desidrogenase/genética , Mesotelioma Maligno/tratamento farmacológico , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Pleurais/tratamento farmacológico , Transportador de Folato Acoplado a Próton/genética , Animais , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Técnicas de Cultura de Células , Hipóxia Celular , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/metabolismo , Camundongos , Pemetrexede/administração & dosagem , Pemetrexede/farmacologia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Pleurais/genética , Neoplasias Pleurais/metabolismo , Transportador de Folato Acoplado a Próton/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa