Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
2.
Nat Immunol ; 21(7): 802-815, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32541832

RESUMO

Microglia and central nervous system (CNS)-associated macrophages (CAMs), such as perivascular and meningeal macrophages, are implicated in virtually all diseases of the CNS. However, little is known about their cell-type-specific roles in the absence of suitable tools that would allow for functional discrimination between the ontogenetically closely related microglia and CAMs. To develop a new microglia gene targeting model, we first applied massively parallel single-cell analyses to compare microglia and CAM signatures during homeostasis and disease and identified hexosaminidase subunit beta (Hexb) as a stably expressed microglia core gene, whereas other microglia core genes were substantially downregulated during pathologies. Next, we generated HexbtdTomato mice to stably monitor microglia behavior in vivo. Finally, the Hexb locus was employed for tamoxifen-inducible Cre-mediated gene manipulation in microglia and for fate mapping of microglia but not CAMs. In sum, we provide valuable new genetic tools to specifically study microglia functions in the CNS.


Assuntos
Encéfalo/patologia , Encefalomielite Autoimune Experimental/patologia , Traumatismos do Nervo Facial/patologia , Microglia/metabolismo , Cadeia beta da beta-Hexosaminidase/metabolismo , Animais , Encéfalo/citologia , Encéfalo/imunologia , Sistemas CRISPR-Cas/genética , Encefalomielite Autoimune Experimental/imunologia , Traumatismos do Nervo Facial/imunologia , Técnicas de Introdução de Genes , Genes Reporter/genética , Loci Gênicos/genética , Humanos , Microscopia Intravital , Substâncias Luminescentes/química , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Microglia/imunologia , Células NIH 3T3 , RNA-Seq , Análise de Célula Única , Transfecção , Cadeia beta da beta-Hexosaminidase/genética , Proteína Vermelha Fluorescente
3.
Cell ; 156(1-2): 277-90, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24439382

RESUMO

Central nervous system myelin is a multilayered membrane sheath generated by oligodendrocytes for rapid impulse propagation. However, the underlying mechanisms of myelin wrapping have remained unclear. Using an integrative approach of live imaging, electron microscopy, and genetics, we show that new myelin membranes are incorporated adjacent to the axon at the innermost tongue. Simultaneously, newly formed layers extend laterally, ultimately leading to the formation of a set of closely apposed paranodal loops. An elaborated system of cytoplasmic channels within the growing myelin sheath enables membrane trafficking to the leading edge. Most of these channels close with ongoing development but can be reopened in adults by experimentally raising phosphatidylinositol-(3,4,5)-triphosphate levels, which reinitiates myelin growth. Our model can explain assembly of myelin as a multilayered structure, abnormal myelin outfoldings in neurological disease, and plasticity of myelin biogenesis observed in adult life.


Assuntos
Axônios/metabolismo , Bainha de Mielina/metabolismo , Animais , Células Cultivadas , Sistema Nervoso Central/metabolismo , Camundongos , Neuroglia/metabolismo , Oligodendroglia/metabolismo , Peixe-Zebra
4.
Brain ; 145(5): 1726-1742, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35202467

RESUMO

Neuromyelitis optica is a chronic neuroinflammatory disease, which primarily targets astrocytes and often results in severe axon injury of unknown mechanism. Neuromyelitis optica patients harbour autoantibodies against the astrocytic water channel protein, aquaporin-4 (AQP4-IgG), which induce complement-mediated astrocyte lysis and subsequent axon damage. Using spinal in vivo imaging in a mouse model of such astrocytopathic lesions, we explored the mechanism underlying neuromyelitis optica-related axon injury. Many axons showed a swift and morphologically distinct 'pearls-on-string' transformation also readily detectable in human neuromyelitis optica lesions, which especially affected small calibre axons independently of myelination. Functional imaging revealed that calcium homeostasis was initially preserved in this 'acute axonal beading' state, ruling out disruption of the axonal membrane, which sets this form of axon injury apart from previously described forms of traumatic and inflammatory axon damage. Morphological, pharmacological and genetic analyses showed that AQP4-IgG-induced axon injury involved osmotic stress and ionic overload, but does not appear to use canonical pathways of Wallerian-like degeneration. Subcellular analysis demonstrated remodelling of the axonal cytoskeleton in beaded axons, especially local loss of microtubules. Treatment with the microtubule stabilizer epothilone, a putative therapy approach for traumatic and degenerative axonopathies, prevented axonal beading, while destabilizing microtubules sensitized axons for beading. Our results reveal a distinct form of immune-mediated axon pathology in neuromyelitis optica that mechanistically differs from known cascades of post-traumatic and inflammatory axon loss, and suggest a new strategy for neuroprotection in neuromyelitis optica and related diseases.


Assuntos
Neuromielite Óptica , Animais , Aquaporina 4 , Astrócitos/metabolismo , Autoanticorpos/metabolismo , Axônios/patologia , Humanos , Imunoglobulina G/metabolismo , Camundongos , Neuromielite Óptica/metabolismo
5.
Mol Cell ; 46(5): 705-13, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22681891

RESUMO

Extensive changes in posttranslational histone modifications accompany the rewiring of the transcriptional program during stem cell differentiation. However, the mechanisms controlling the changes in specific chromatin modifications and their function during differentiation remain only poorly understood. We show that histone H2B monoubiquitination (H2Bub1) significantly increases during differentiation of human mesenchymal stem cells (hMSCs) and various lineage-committed precursor cells and in diverse organisms. Furthermore, the H2B ubiquitin ligase RNF40 is required for the induction of differentiation markers and transcriptional reprogramming of hMSCs. This function is dependent upon CDK9 and the WAC adaptor protein, which are required for H2B monoubiquitination. Finally, we show that RNF40 is required for the resolution of the H3K4me3/H3K27me3 bivalent poised state on lineage-specific genes during the transition from an inactive to an active chromatin conformation. Thus, these data indicate that H2Bub1 is required for maintaining multipotency of hMSCs and plays a central role in controlling stem cell differentiation.


Assuntos
Diferenciação Celular/genética , Histonas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Linhagem Celular , Montagem e Desmontagem da Cromatina , Quinase 9 Dependente de Ciclina/genética , Quinase 9 Dependente de Ciclina/fisiologia , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Multipotentes/metabolismo , Processamento de Proteína Pós-Traducional , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
6.
EMBO Rep ; 18(7): 1186-1198, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28483841

RESUMO

Sequence variations in the triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to an increased risk for neurodegenerative disorders such as Alzheimer's disease and frontotemporal lobar degeneration. In the brain, TREM2 is predominantly expressed in microglia. Several disease-associated TREM2 variants result in a loss of function by reducing microglial phagocytosis, impairing lipid sensing, preventing binding of lipoproteins and affecting shielding of amyloid plaques. We here investigate the consequences of TREM2 loss of function on the microglia transcriptome. Among the differentially expressed messenger RNAs in wild-type and Trem2-/- microglia, gene clusters are identified which represent gene functions in chemotaxis, migration and mobility. Functional analyses confirm that loss of TREM2 impairs appropriate microglial responses to injury and signals that normally evoke chemotaxis on multiple levels. In an ex vivo organotypic brain slice assay, absence of TREM2 reduces the distance migrated by microglia. Moreover, migration towards defined chemo-attractants is reduced upon ablation of TREM2 and can be rescued by TREM2 re-expression. In vivo, microglia lacking TREM2 migrate less towards injected apoptotic neurons, and outgrowth of microglial processes towards sites of laser-induced focal CNS damage in the somatosensory cortex is slowed. The apparent lack of chemotactic stimulation upon depletion of TREM2 is consistent with a stable expression profile of genes characterizing the homoeostatic signature of microglia.


Assuntos
Quimiotaxia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Microglia/fisiologia , Neurônios/patologia , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Células Cultivadas , Demência Frontotemporal , Perfilação da Expressão Gênica , Humanos , Mutação com Perda de Função , Células Mieloides , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Fagocitose
7.
Glia ; 65(7): 1021-1031, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28168748

RESUMO

Rapid nerve conduction depends on myelin, but not all axons in the central nervous system (CNS) are myelinated to the same extent. Here, we review our current understanding of the biology of myelin biogenesis in the CNS. We focus on how the different steps of myelination are interconnected and how distinct patterns of myelin are generated. Possibly, a "basal" mode of myelination is laying the groundwork in areas devoted to basic homeostasis early in development, whereas a "targeted" mode generates myelin in regions controlling more complex tasks throughout adulthood. Such mechanisms may explain why myelination progresses in some areas according to a typical chronological and topographic sequence, while in other regions it is regulated by environmental stimuli contributing to interindividual variability of myelin structure. GLIA 2017;65:1021-1031.


Assuntos
Diferenciação Celular/fisiologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Bainha de Mielina/fisiologia , Animais , Axônios , Humanos , Modelos Biológicos , Oligodendroglia
8.
J Cell Sci ; 127(Pt 14): 2999-3004, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25024457

RESUMO

The myelin sheath is a plasma membrane extension that is laid down in regularly spaced segments along axons of the nervous system. This process involves extensive changes in oligodendrocyte cell shape and membrane architecture. In this Cell Science at a Glance article and accompanying poster, we provide a model of how myelin of the central nervous system is wrapped around axons to form a tightly compacted, multilayered membrane structure. This model may not only explain how myelin is generated during brain development, but could also help us to understand myelin remodeling in adult life, which might serve as a form of plasticity for the fine-tuning of neuronal networks.


Assuntos
Sistema Nervoso Central/metabolismo , Bainha de Mielina/metabolismo , Animais , Humanos
9.
PLoS Biol ; 11(6): e1001577, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762018

RESUMO

Rapid conduction of nerve impulses requires coating of axons by myelin. To function as an electrical insulator, myelin is generated as a tightly packed, lipid-rich multilayered membrane sheath. Knowledge about the mechanisms that govern myelin membrane biogenesis is required to understand myelin disassembly as it occurs in diseases such as multiple sclerosis. Here, we show that myelin basic protein drives myelin biogenesis using weak forces arising from its inherent capacity to phase separate. The association of myelin basic protein molecules to the inner leaflet of the membrane bilayer induces a phase transition into a cohesive mesh-like protein network. The formation of this protein network shares features with amyloid fibril formation. The process is driven by phenylalanine-mediated hydrophobic and amyloid-like interactions that provide the molecular basis for protein extrusion and myelin membrane zippering. These findings uncover a physicochemical mechanism of how a cytosolic protein regulates the morphology of a complex membrane architecture. These results provide a key mechanism in myelin membrane biogenesis with implications for disabling demyelinating diseases of the central nervous system.


Assuntos
Proteína Básica da Mielina/metabolismo , Bainha de Mielina/metabolismo , Transição de Fase , Sequência de Aminoácidos , Amiloide/metabolismo , Animais , Células HEK293 , Humanos , Interações Hidrofóbicas e Hidrofílicas , Membranas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteína Básica da Mielina/química , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
10.
Proc Natl Acad Sci U S A ; 110(8): 3143-8, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23382229

RESUMO

During the development of the central nervous system (CNS), oligodendrocytes wrap their plasma membrane around axons to form a multilayered stack of tightly attached membranes. Although intracellular myelin compaction and the role of myelin basic protein has been investigated, the forces that mediate the close interaction of myelin membranes at their external surfaces are poorly understood. Such extensive bilayer-bilayer interactions are usually prevented by repulsive forces generated by the glycocalyx, a dense and confluent layer of large and negatively charged oligosaccharides. Here we investigate the molecular mechanisms underlying myelin adhesion and compaction in the CNS. We revisit the role of the proteolipid protein and analyze the contribution of oligosaccharides using cellular assays, biophysical tools, and transgenic mice. We observe that differentiation of oligodendrocytes is accompanied by a striking down-regulation of components of their glycocalyx. Both in vitro and in vivo experiments indicate that the adhesive properties of the proteolipid protein, along with the reduction of sialic acid residues from the cell surface, orchestrate myelin membrane adhesion and compaction in the CNS. We suggest that loss of electrostatic cell-surface repulsion uncovers weak and unspecific attractive forces in the bilayer that bring the extracellular surfaces of a membrane into close contact over long distances.


Assuntos
Sistema Nervoso Central/metabolismo , Bainha de Mielina/metabolismo , Eletricidade Estática , Animais , Membrana Celular/metabolismo , Células Cultivadas , Bicamadas Lipídicas , Camundongos , Oligodendroglia/metabolismo , Ligação Proteica
11.
PLoS Genet ; 9(12): e1003980, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348263

RESUMO

Glia are of vital importance for all complex nervous system. One of the many functions of glia is to insulate and provide trophic and metabolic support to axons. Here, using glial-specific RNAi knockdown in Drosophila, we silenced 6930 conserved genes in adult flies to identify essential genes and pathways. Among our screening hits, metabolic processes were highly represented, and genes involved in carbohydrate and lipid metabolic pathways appeared to be essential in glia. One critical pathway identified was de novo ceramide synthesis. Glial knockdown of lace, a subunit of the serine palmitoyltransferase associated with hereditary sensory and autonomic neuropathies in humans, resulted in ensheathment defects of peripheral nerves in Drosophila. A genetic dissection study combined with shotgun high-resolution mass spectrometry of lipids showed that levels of ceramide phosphoethanolamine are crucial for axonal ensheathment by glia. A detailed morphological and functional analysis demonstrated that the depletion of ceramide phosphoethanolamine resulted in axonal defasciculation, slowed spike propagation, and failure of wrapping glia to enwrap peripheral axons. Supplementing sphingosine into the diet rescued the neuropathy in flies. Thus, our RNAi study in Drosophila identifies a key role of ceramide phosphoethanolamine in wrapping of axons by glia.


Assuntos
Axônios/metabolismo , Drosophila melanogaster/genética , Neuroglia/metabolismo , Esfingomielinas/genética , Animais , Metabolismo dos Carboidratos/genética , Comunicação Celular , Movimento Celular/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Genoma de Inseto , Humanos , Metabolismo dos Lipídeos/genética , Neurogênese/genética , Nervos Periféricos/metabolismo , Interferência de RNA , Esfingomielinas/metabolismo
12.
J Struct Biol ; 184(2): 355-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24121039

RESUMO

Volume microscopy at high resolution is increasingly required to better understand cellular functions in the context of three-dimensional assemblies. Focused ion beam (FIB) milling for serial block face imaging in the scanning electron microscope (SEM) is an efficient and fast method to generate such volume data for 3D analysis. Here, we apply this technique at cryo-conditions to image fully hydrated frozen specimen of mouse optic nerves and Bacillus subtilis spores obtained by high-pressure freezing (HPF). We established imaging conditions to directly visualize the ultrastructure in the block face at -150 °C by using an in-lens secondary electron (SE) detector. By serial sectioning with a focused ion beam and block face imaging of the optic nerve we obtained a volume as large as X=7.72 µm, Y=5.79 µm and Z=3.81 µm with a lateral pixel size of 7.5 nm and a slice thickness of 30 nm in Z. The intrinsic contrast of membranes was sufficient to distinguish structures like Golgi cisternae, vesicles, endoplasmic reticulum and cristae within mitochondria and allowed for a three-dimensional reconstruction of different types of mitochondria within an oligodendrocyte and an astrocytic process. Applying this technique to dormant B. subtilis spores we obtained volumes containing numerous spores and discovered a bright signal in the core, which cannot be related to any known structure so far. In summary, we describe the use of cryo FIB-SEM as a tool for direct and fast 3D cryo-imaging of large native frozen samples including tissues.


Assuntos
Microscopia Crioeletrônica , Nervo Óptico/ultraestrutura , Animais , Bacillus subtilis/ultraestrutura , Secções Congeladas , Imageamento Tridimensional , Camundongos , Microscopia Eletrônica de Varredura , Esporos Bacterianos/ultraestrutura
13.
Biochim Biophys Acta ; 1821(8): 1146-53, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22314181

RESUMO

Myelin-forming glia are highly polarized cells that synthesize as an extension of their plasma membrane, a multilayered myelin membrane sheath, with a unique protein and lipid composition. In most cells polarity is established by the polarized exocytosis of membrane vesicles to the distinct plasma membrane domains. Since myelin is composed of a stack of tightly packed membrane layers that do not leave sufficient space for the vesicular trafficking, we hypothesize that myelin does not use polarized exocytosis as a primary mechanism, but rather depends on lateral transport of membrane components in the plasma membrane. We suggest a model in which vesicle-mediated transport is confined to the cytoplasmic channels, from where transport to the compacted areas occurs by lateral flow of cargo within the plasma membrane. A diffusion barrier that is formed by MBP and the two adjacent cytoplasmic leaflets of the myelin bilayers acts a molecular sieve and regulates the flow of the components. Finally, we highlight potential mechanism that may contribute to the assembly of specific lipids within myelin. This article is part of a Special Issue entitled Lipids and Vesicular Transport.


Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Bainha de Mielina/metabolismo , Células de Schwann/metabolismo , Animais , Transporte Biológico , Membrana Celular/química , Membrana Celular/ultraestrutura , Polaridade Celular , Difusão , Exocitose , Humanos , Metabolismo dos Lipídeos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Bainha de Mielina/química , Bainha de Mielina/ultraestrutura , Neurônios/metabolismo , Vesículas Transportadoras/metabolismo
14.
Methods Cell Biol ; 177: 125-170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37451765

RESUMO

In this chapter, we review Automated Tape Collecting Ultramicrotomy (ATUM), which, among other array tomography methods, substantially simplified large-scale volume electron microscopy (vEM) projects. vEM reveals biological structures at nanometer resolution in three dimensions and resolves ambiguities of two-dimensional representations. However, as the structures of interest-like disease hallmarks emerging from neuropathology-are often rare but the field of view is small, this can easily turn a vEM project into a needle in a haystack problem. One solution for this is correlated light and electron microscopy (CLEM), providing tissue context, dynamic and molecular features before switching to targeted vEM to hone in on the object's ultrastructure. This requires precise coordinate transfer between the two imaging modalities (e.g., by micro computed tomography), especially for block face vEM which relies on physical destruction of sections. With array tomography methods, serial ultrathin sections are collected into a tissue library, thus allowing storage of precious samples like human biopsies and enabling repetitive imaging at different resolution levels for an SEM-based search strategy. For this, ATUM has been developed to reliably collect serial ultrathin sections via a conveyor belt onto a plastic tape that is later mounted onto silicon wafers for serial scanning EM (SEM). The ATUM-SEM procedure is highly modular and can be divided into sample preparation, serial ultramicrotomy onto tape, mounting, serial image acquisition-after which the acquired image stacks can be used for analysis. Here, we describe the steps of this workflow and how ATUM-SEM enables targeting and high resolution imaging of specific structures. ATUM-SEM is widely applicable. To illustrate this, we exemplify the approach by reconstructions of focal pathology in an Alzheimer mouse model and CLEM of a specific cortical synapse.


Assuntos
Microtomia , Microscopia Eletrônica de Volume , Camundongos , Animais , Humanos , Microscopia Eletrônica de Varredura , Microtomografia por Raio-X , Microtomia/métodos , Neurônios , Imageamento Tridimensional/métodos
15.
Neuron ; 111(11): 1748-1759.e8, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37071991

RESUMO

In multiple sclerosis, an inflammatory attack results in myelin loss, which can be partially reversed by remyelination. Recent studies suggest that mature oligodendrocytes could contribute to remyelination by generating new myelin. Here, we show that in a mouse model of cortical multiple sclerosis pathology, surviving oligodendrocytes can indeed extend new proximal processes but rarely generate new myelin internodes. Furthermore, drugs that boost myelin recovery by targeting oligodendrocyte precursor cells did not enhance this alternate mode of myelin regeneration. These data indicate that the contribution of surviving oligodendrocytes to myelin recovery in the inflamed mammalian CNS is minor and inhibited by distinct remyelination brakes.


Assuntos
Esclerose Múltipla , Remielinização , Camundongos , Animais , Oligodendroglia/patologia , Bainha de Mielina/patologia , Axônios/patologia , Mamíferos
16.
Front Neuroanat ; 15: 732506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720890

RESUMO

Ultrastructural analysis of discrete neurobiological structures by volume scanning electron microscopy (SEM) often constitutes a "needle-in-the-haystack" problem and therefore relies on sophisticated search strategies. The appropriate SEM approach for a given relocation task not only depends on the desired final image quality but also on the complexity and required accuracy of the screening process. Block-face SEM techniques like Focused Ion Beam or serial block-face SEM are "one-shot" imaging runs by nature and, thus, require precise relocation prior to acquisition. In contrast, "multi-shot" approaches conserve the sectioned tissue through the collection of serial sections onto solid support and allow reimaging. These tissue libraries generated by Array Tomography or Automated Tape Collecting Ultramicrotomy can be screened at low resolution to target high resolution SEM. This is particularly useful if a structure of interest is rare or has been predetermined by correlated light microscopy, which can assign molecular, dynamic and functional information to an ultrastructure. As such approaches require bridging mm to nm scales, they rely on tissue trimming at different stages of sample processing. Relocation is facilitated by endogenous or exogenous landmarks that are visible by several imaging modalities, combined with appropriate registration strategies that allow overlaying images of various sources. Here, we discuss the opportunities of using multi-shot serial sectioning SEM approaches, as well as suitable trimming and registration techniques, to slim down the high-resolution imaging volume to the actual structure of interest and hence facilitate ambitious targeted volume SEM projects.

17.
Nat Neurosci ; 24(3): 355-367, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495636

RESUMO

Cortical pathology contributes to chronic cognitive impairment of patients suffering from the neuroinflammatory disease multiple sclerosis (MS). How such gray matter inflammation affects neuronal structure and function is not well understood. In the present study, we use functional and structural in vivo imaging in a mouse model of cortical MS to demonstrate that bouts of cortical inflammation disrupt cortical circuit activity coincident with a widespread, but transient, loss of dendritic spines. Spines destined for removal show local calcium accumulations and are subsequently removed by invading macrophages or activated microglia. Targeting phagocyte activation with a new antagonist of the colony-stimulating factor 1 receptor prevents cortical synapse loss. Overall, our study identifies synapse loss as a key pathological feature of inflammatory gray matter lesions that is amenable to immunomodulatory therapy.


Assuntos
Cálcio/metabolismo , Córtex Cerebral/metabolismo , Inflamação/metabolismo , Esclerose Múltipla/metabolismo , Fagócitos/metabolismo , Sinapses/metabolismo , Animais , Córtex Cerebral/patologia , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Inflamação/patologia , Camundongos , Microglia/metabolismo , Esclerose Múltipla/patologia , Neurônios/metabolismo , Neurônios/patologia , Sinapses/patologia
18.
Nat Commun ; 11(1): 4901, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994410

RESUMO

Myelin, rather than being a static insulator of axons, is emerging as an active participant in circuit plasticity. This requires precise regulation of oligodendrocyte numbers and myelination patterns. Here, by devising a laser ablation approach of single oligodendrocytes, followed by in vivo imaging and correlated ultrastructural reconstructions, we report that in mouse cortex demyelination as subtle as the loss of a single oligodendrocyte can trigger robust cell replacement and remyelination timed by myelin breakdown. This results in reliable reestablishment of the original myelin pattern along continuously myelinated axons, while in parallel, patchy isolated internodes emerge on previously unmyelinated axons. Therefore, in mammalian cortex, internodes along partially myelinated cortical axons are typically not reestablished, suggesting that the cues that guide patchy myelination are not preserved through cycles of de- and remyelination. In contrast, myelin sheaths forming continuous patterns show remarkable homeostatic resilience and remyelinate with single axon precision.


Assuntos
Córtex Cerebral/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Animais , Axônios/metabolismo , Córtex Cerebral/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/citologia , Remielinização
19.
Glia ; 57(16): 1815-24, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19459211

RESUMO

Most axons in the central nervous system (CNS) are surrounded by a multilayered myelin sheath that promotes fast, saltatory conduction of electrical impulses. By insulating the axon, myelin also shields the axoplasm from the extracellular milieu. In the CNS, oligodendrocytes provide support for the long-term maintenance of myelinated axons, independent of the myelin sheath. Here, we use electron microscopy and morphometric analyses to examine the evolution of axonal and oligodendroglial changes in mice deficient in 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) and in mice deficient in both CNP and proteolipid protein (PLP/DM20). We show that CNP is necessary for the formation of a normal inner tongue process of oligodendrocytes that myelinate small diameter axons. We also show that axonal degeneration in Cnp1 null mice is present very early in postnatal life. Importantly, compact myelin formed by transplanted Cnp1 null oligodendrocytes induces the same degenerative changes in shiverer axons that normally are dysmyelinated but structurally intact. Mice deficient in both CNP and PLP develop a more severe axonal phenotype than either single mutant, indicating that the two oligodendroglial proteins serve distinct functions in supporting the myelinated axon. These observations support a model in which the trophic functions of oligodendrocytes serve to offset the physical shielding of axons by myelin membranes.


Assuntos
2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , Axônios/ultraestrutura , Junções Intercelulares/ultraestrutura , Oligodendroglia/ultraestrutura , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/metabolismo , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Axônios/metabolismo , Sobrevivência Celular , Eletrofisiologia , Junções Intercelulares/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/ultraestrutura , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/ultraestrutura , Oligodendroglia/metabolismo , Nervo Óptico/metabolismo , Nervo Óptico/ultraestrutura , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura
20.
Exp Neurol ; 320: 112968, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31152743

RESUMO

In vivo imaging of the rodent spinal cord has advanced our understanding of how resident cells of the central nervous system (CNS) respond to neuroinflammation. By combining two-photon imaging and experimental autoimmune encephalomyelitis (EAE), the most widely used rodent model of multiple sclerosis (MS), it has been possible, for example, to study how axons degenerate when confronted with inflammatory cells, how oligodendrocytes get damaged in inflammatory lesions, and how immune cells themselves adapt their phenotype and functionality to the changing lesion environment. Similar approaches are now increasingly used to study other forms of neuroinflammation, such as antibody/complement-mediated neuromyelitis optica spectrum disease (NMOSD). To tackle the most pressing open questions in the field, new biosensors and indicator mice that report the metabolic state and interaction of cells in neuroinflammatory lesions are being developed. Moreover, the field is moving towards new anatomical sites of inflammation, such as the cortical gray matter, but also towards longer observation intervals to reveal the chronic perturbations and adaptations that characterize advanced stages of MS.


Assuntos
Doenças do Sistema Nervoso Central/patologia , Neuroimagem/métodos , Animais , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa