Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biomol Screen ; 20(7): 869-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26024945

RESUMO

For the development of therapeutically potent anti-cancer antibody drugs, it is often important to identify antibodies that internalize into cells efficiently, rather than just binding to antigens on the cell surface. Such antibodies can mediate receptor endocytosis, resulting in receptor downregulation on the cell surface and potentially inhibiting receptor function and tumor growth. Also, efficient antibody internalization is a prerequisite for the delivery of cytotoxic drugs into target cells and is critical for the development of antibody-drug conjugates. Here we describe a novel activatable fluorescence-quencher pair to quantify the extent of antibody internalization and degradation in the target cells. In this assay, candidate antibodies were labeled with a fluorescent dye and a quencher. Fluorescence is inhibited outside and on the surface of cells, but activated upon endocytosis and degradation of the antibody. This assay enabled the development of a process for rapid characterization of candidate antibodies potentially in a high-throughput format. By employing an activatable secondary antibody, primary antibodies in purified form or in culture supernatants can be screened for internalization and degradation. Because purification of candidate antibodies is not required, this method represents a direct functional screen to identify antibodies that internalize efficiently early in the discovery process.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Imunofluorescência , Corantes Fluorescentes , Anticorpos Monoclonais/metabolismo , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Humanos , Imunoconjugados/farmacologia , Transporte Proteico , Proteólise
2.
MAbs ; 7(5): 931-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26073904

RESUMO

Bi-specific antibodies (BsAbs), which can simultaneously block 2 tumor targets, have emerged as promising therapeutic alternatives to combinations of individual monoclonal antibodies. Here, we describe the engineering and development of a novel, human bi-functional antibody-receptor domain fusion molecule with ligand capture (bi-AbCap) through the fusion of the domain 2 of human vascular endothelial growth factor receptor 1 (VEGFR1) to an antibody directed against insulin-like growth factor - type I receptor (IGF-IR). The bi-AbCap possesses excellent stability and developability, and is the result of minimal engineering. Beyond potent neutralizing activities against IGF-IR and VEGF, the bi-AbCap is capable of cross-linking VEGF to IGF-IR, leading to co-internalization and degradation of both targets by tumor cells. In multiple mouse xenograft tumor models, the bi-AbCap improves anti-tumor activity over individual monotherapies. More importantly, it exhibits superior inhibition of tumor growth, compared with the combination of anti-IGF-IR and anti-VEGF therapies, via powerful blockade of both direct tumor cell growth and tumor angiogenesis. The unique "capture-for-degradation" mechanism of the bi-AbCap is informative for the design of next-generation bi-functional anti-cancer therapies directed against independent signaling pathways. The bi-AbCap design represents an alternative approach to the creation of dual-targeting antibody fusion molecules by taking advantage of natural receptor-ligand interactions.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Neutralizantes/farmacologia , Receptores de Somatomedina/antagonistas & inibidores , Proteínas Recombinantes de Fusão/farmacologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos , Cromatografia Líquida de Alta Pressão , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Immunoblotting , Imunoprecipitação , Camundongos , Camundongos Nus , Microscopia Confocal , Neoplasias Experimentais/tratamento farmacológico , Estabilidade Proteica , Receptor IGF Tipo 1 , Ressonância de Plasmônio de Superfície , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Mol Biol ; 426(7): 1583-99, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24380763

RESUMO

Conformational entropy is an important component of protein-protein interactions; however, there is no reliable method for computing this parameter. We have developed a statistical measure of residual backbone entropy in folded proteins by using the ϕ-ψ distributions of the 20 amino acids in common secondary structures. The backbone entropy patterns of amino acids within helix, sheet or coil form clusters that recapitulate the branching and hydrogen bonding properties of the side chains in the secondary structure type. The same types of residues in coil and sheet have identical backbone entropies, while helix residues have much smaller conformational entropies. We estimated the backbone entropy change for immunoglobulin complementarity-determining regions (CDRs) from the crystal structures of 34 low-affinity T-cell receptors and 40 high-affinity Fabs as a result of the formation of protein complexes. Surprisingly, we discovered that the computed backbone entropy loss of only the CDR3, but not all CDRs, correlated significantly with the kinetic and affinity constants of the 74 selected complexes. Consequently, we propose a simple algorithm to introduce proline mutations that restrict the conformational flexibility of CDRs and enhance the kinetics and affinity of immunoglobulin interactions. Combining the proline mutations with rationally designed mutants from a previous study led to 2400-fold increase in the affinity of the A6 T-cell receptor for Tax-HLAA2. However, this mutational scheme failed to induce significant binding changes in the already-high-affinity C225-Fab/huEGFR interface. Our results will serve as a roadmap to formulate more effective target functions to design immune complexes with improved biological functions.


Assuntos
Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/metabolismo , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Bases de Dados de Proteínas , Entropia , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/metabolismo , Ressonância de Plasmônio de Superfície
4.
MAbs ; 5(3): 418-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23567210

RESUMO

Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies.


Assuntos
Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Citotoxicidade Celular Dependente de Anticorpos/genética , Células CHO , Cricetinae , Cricetulus , Cisteína/genética , Células HEK293 , Temperatura Alta/efeitos adversos , Humanos , Imunoglobulina G/genética , Cadeias Leves de Imunoglobulina/genética , Mutagênese Sítio-Dirigida , Mutação/genética , Ligação Proteica/genética , Estabilidade Proteica , Serina/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa