Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 20(1): 31, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537647

RESUMO

BACKGROUND: Traffic-derived particles are important contributors to the adverse health effects of ambient particulate matter (PM). In Nordic countries, mineral particles from road pavement and diesel exhaust particles (DEP) are important constituents of traffic-derived PM. In the present study we compared the pro-inflammatory responses of mineral particles and DEP to PM from two road tunnels, and examined the mechanisms involved. METHODS: The pro-inflammatory potential of 100 µg/mL coarse (PM10-2.5), fine (PM2.5-0.18) and ultrafine PM (PM0.18) sampled in two road tunnels paved with different stone materials was assessed in human bronchial epithelial cells (HBEC3-KT), and compared to DEP and particles derived from the respective stone materials. Release of pro-inflammatory cytokines (CXCL8, IL-1α, IL-1ß) was measured by ELISA, while the expression of genes related to inflammation (COX2, CXCL8, IL-1α, IL-1ß, TNF-α), redox responses (HO-1) and metabolism (CYP1A1, CYP1B1, PAI-2) was determined by qPCR. The roles of the aryl hydrocarbon receptor (AhR) and reactive oxygen species (ROS) were examined by treatment with the AhR-inhibitor CH223191 and the anti-oxidant N-acetyl cysteine (NAC). RESULTS: Road tunnel PM caused time-dependent increases in expression of CXCL8, COX2, IL-1α, IL-1ß, TNF-α, COX2, PAI-2, CYP1A1, CYP1B1 and HO-1, with fine PM as more potent than coarse PM at early time-points. The stone particle samples and DEP induced lower cytokine release than all size-fractionated PM samples for one tunnel, and versus fine PM for the other tunnel. CH223191 partially reduced release and expression of IL-1α and CXCL8, and expression of COX2, for fine and coarse PM, depending on tunnel, response and time-point. Whereas expression of CYP1A1 was markedly reduced by CH223191, HO-1 expression was not affected. NAC reduced the release and expression of IL-1α and CXCL8, and COX2 expression, but augmented expression of CYP1A1 and HO-1. CONCLUSIONS: The results indicate that the pro-inflammatory responses of road tunnel PM in HBEC3-KT cells are not attributed to the mineral particles or DEP alone. The pro-inflammatory responses seem to involve AhR-dependent mechanisms, suggesting a role for organic constituents. ROS-mediated mechanisms were also involved, probably through AhR-independent pathways. DEP may be a contributor to the AhR-dependent responses, although other sources may be of importance.


Assuntos
Poluentes Atmosféricos , Material Particulado , Humanos , Material Particulado/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ciclo-Oxigenase 2 , Citocromo P-450 CYP1A1/genética , Inibidor 2 de Ativador de Plasminogênio/metabolismo , Inibidor 2 de Ativador de Plasminogênio/farmacologia , Citocinas/metabolismo , Células Epiteliais , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/metabolismo
2.
Part Fibre Toxicol ; 19(1): 46, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794670

RESUMO

BACKGROUND: Respirable mineral particles represent a potential health hazard in occupational settings and ambient air. Previous studies show that mineral particles may induce cytotoxicity and inflammatory reactions in vitro and in vivo and that the potency varies between samples of different composition. However, the reason for these differences is largely unknown and the impact of mineralogical composition on the biological effects of mineral dust remains to be determined. METHODS: We have assessed the cytotoxic and pro-inflammatory effects of ten mineral particle samples of different composition in human bronchial epithelial cells (HBEC3-KT) and THP-1-derived macrophages, as well as their membranolytic properties in erythrocytes. Moreover, the results were compiled with the results of recently published experiments on the effects of stone particle exposure and analysed using linear regression models to elucidate which mineral components contribute most to the toxicity of mineral dust. RESULTS: While all mineral particle samples were more cytotoxic to HBEC3-KT cells than THP-1 macrophages, biotite and quartz were among the most cytotoxic in both cell models. In HBEC3-KT cells, biotite and quartz also appeared to be the most potent inducers of pro-inflammatory cytokines, while the quartz, Ca-feldspar, Na-feldspar and biotite samples were the most potent in THP-1 macrophages. All particle samples except quartz induced low levels of membranolysis. The regression analyses revealed associations between particle bioactivity and the content of quartz, muscovite, plagioclase, biotite, anorthite, albite, microcline, calcite, chlorite, orthopyroxene, actinolite and epidote, depending on the cell model and endpoint. However, muscovite was the only mineral consistently associated with increased cytotoxicity and cytokine release in both cell models. CONCLUSIONS: The present study provides further evidence that mineral particles may induce cytotoxicity and inflammation in cells of the human airways and that particle samples of different mineralogical composition differ in potency. The results show that quartz, while being among the most potent samples, does not fully predict the toxicity of mineral dust, highlighting the importance of other particle constituents. Moreover, the results indicate that the phyllosilicates muscovite and biotite may be more potent than other minerals assessed in the study, suggesting that this group of sheet-like minerals may warrant further attention.


Assuntos
Poeira , Quartzo , Citocinas , Poeira/análise , Células Epiteliais , Humanos , Inflamação/induzido quimicamente , Minerais/toxicidade , Quartzo/toxicidade
3.
Part Fibre Toxicol ; 19(1): 45, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787286

RESUMO

BACKGROUND: Traffic particulate matter (PM) comprises a mixture of particles from fuel combustion and wear of road pavement, tires and brakes. In countries with low winter temperatures the relative contribution of mineral-rich PM from road abrasion may be especially high due to use of studded tires during winter season. The aim of the present study was to sample and characterize size-fractioned PM from two road tunnels paved with different stone materials in the asphalt, and to compare the pro-inflammatory potential of these fractions in human bronchial epithelial cells (HBEC3-KT) in relation to physicochemical characteristics. METHODS: The road tunnel PM was collected with a vacuum pump and a high-volume cascade impactor sampler. PM was sampled during winter, both during humid and dry road surface conditions, and before and after cleaning the tunnels. Samples were analysed for hydrodynamic size distribution, content of elemental carbon (EC), organic carbon (OC) and endotoxin, and the capacity for acellular generation of reactive oxygen species. Cytotoxicity and pro-inflammatory responses were assessed in HBEC3-KT cells after exposure to coarse (2.5-10 µm), fine (0.18-2.5 µm) and ultrafine PM (≤ 0.18 µm), as well as particles from the respective stone materials used in the pavement. RESULTS: The pro-inflammatory potency of the PM samples varied between road tunnels and size fractions, but showed more marked responses than for the stone materials used in asphalt of the respective tunnels. In particular, fine samples showed significant increases as low as 25 µg/mL (2.6 µg/cm2) and were more potent than coarse samples, while ultrafine samples showed more variable responses between tunnels, sampling conditions and endpoints. The most marked responses were observed for fine PM sampled during humid road surface conditions. Linear correlation analysis showed that particle-induced cytokine responses were correlated to OC levels, while no correlations were observed for other PM characteristics. CONCLUSIONS: The pro-inflammatory potential of fine road tunnel PM sampled during winter season was high compared to coarse PM. The differences between the PM-induced cytokine responses were not related to stone materials in the asphalt. However, the ratio of OC to total PM mass was associated with the pro-inflammatory potential.


Assuntos
Células Epiteliais , Material Particulado , Carbono , Citocinas , Humanos , Material Particulado/toxicidade , Estações do Ano
4.
Part Fibre Toxicol ; 18(1): 18, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33957952

RESUMO

BACKGROUND: Respirable stone- and mineral particles may be a major constituent in occupational and ambient air pollution and represent a possible health hazard. However, with exception of quartz and asbestos, little is known about the toxic properties of mineral particles. In the present study, the pro-inflammatory and cytotoxic responses to six stone particle samples of different composition and with diameter below 10 µm were assessed in human bronchial epithelial cells (HBEC3-KT), THP-1 macrophages and a HBEC3-KT/THP-1 co-culture. Moreover, particle-induced lysis of human erythrocytes was assessed to determine the ability of the particles to lyse biological membranes. Finally, the role of the NLRP3 inflammasome was assessed using a NLRP3-specific inhibitor and detection of ASC oligomers and cleaved caspase-1 and IL-1ß. A reference sample of pure α-quartz was included for comparison. RESULTS: Several stone particle samples induced a concentration-dependent increase in cytotoxicity and secretion of the pro-inflammatory cytokines CXCL8, IL-1α, IL-1ß and TNFα. In HBEC3-KT, quartzite and anorthosite were the most cytotoxic stone particle samples and induced the highest levels of cytokines. Quartzite and anorthosite were also the most cytotoxic samples in THP-1 macrophages, while anorthosite and hornfels induced the highest cytokine responses. In comparison, few significant differences between particle samples were detected in the co-culture. Adjusting responses for differences in surface area concentrations did not fully account for the differences between particle samples. Moreover, the stone particles had low hemolytic potential, indicating that the effects were not driven by membrane lysis. Pre-incubation with a NLRP3-specific inhibitor reduced stone particle-induced cytokine responses in THP-1 macrophages, but not in HBEC3-KT cells, suggesting that the effects are mediated through different mechanisms in epithelial cells and macrophages. Particle exposure also induced an increase in ASC oligomers and cleaved caspase-1 and IL-1ß in THP-1 macrophages, confirming the involvement of the NLRP3 inflammasome. CONCLUSIONS: The present study indicates that stone particles induce cytotoxicity and pro-inflammatory responses in human bronchial epithelial cells and macrophages, acting through NLRP3-independent and -dependent mechanisms, respectively. Moreover, some particle samples induced cytotoxicity and cytokine release to a similar or greater extent than α-quartz. Thus, these minerals warrant further attention in future research.


Assuntos
Inflamassomos , Macrófagos , Material Particulado/toxicidade , Caspase 1 , Citocinas , Humanos , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Quartzo/toxicidade
5.
J Hazard Mater ; 435: 129032, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35650740

RESUMO

Road pollution is one of the major sources of microplastic particles to the environment. The distribution of tire, polymer-modified bitumen (PMB) and tire and road wear particles (TRWP) in different tunnel compartments were explored: road surface, gully-pots and tunnel wash water. A new method for calculating TRWP using Monte Carlo simulation is presented. The highest concentrations on the surface were in the side bank (tire:13.4 ± 5.67;PMB:9.39 ± 3.96; TRWP:22.9 ± 8.19 mg/m2), comparable to previous studies, and at the tunnel outlet (tire:7.72 ± 11.2; PMB:5.40 ± 7.84; TRWP:11.2 ± 16.2 mg/m2). The concentrations in gully-pots were highest at the inlet (tire:24.7 ± 26.9; PMB:17.3 ± 48.8; TRWP:35.8 ± 38.9 mg/g) and comparable to values previously reported for sedimentation basins. Untreated wash water was comparable to road runoff (tire:38.3 ± 10.5; PMB:26.8 ± 7.33; TRWP:55.3 ± 15.2 mg/L). Sedimentation treatment retained 63% of tire and road wear particles, indicating a need to increase the removal efficiency to prevent these from entering the environment. A strong linear relationship (R2-adj=0.88, p < 0.0001) between total suspended solids (TSS) and tire and road wear rubber was established, suggesting a potential for using TSS as a proxy for estimating rubber loads for monitoring purposes. Future research should focus on a common approach to analysis and calculation of tire, PMB and TRWP and address the uncertainties related to these calculations.


Assuntos
Microplásticos , Material Particulado , Material Particulado/análise , Plásticos , Borracha , Água
6.
Sci Total Environ ; 649: 703-711, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30176481

RESUMO

Road traffic emissions are known to contribute heavily to the pollution in urban environments. The aim of this study was to establish specific traffic pollution markers in an urban road setting based on the occurrence profiles of benzotriazoles, benzothiazoles and trace elements in road dust and relevant matrices, including airborne particulate matter and core asphalt. Benzotriazoles and benzothiazoles are high-production volume chemicals that are used as complexing and anticorrosive agents for metals, act as vulcanizing accelerators for rubber materials, and possess anti-freezing/anti-icing properties. In this study, six benzothiazoles (benzothiazole, 2­morpholin­4­yl­benzothiazole, 2­hydroxy­benzothiazole, 2­thio­benzothiazole, 2­methylthio­benzothiazole, and 2­amino­benzothiazole), seven benzotriazoles (1H­benzotriazole, 1­hydroxy­benzotriazole, 5­chloro­1H­benzotriazole, tolyltriazole, xylyltriazole, benzotriazole­5­carboxyl acid, and 5­amino­1H­benzotriazole), and 66 trace elements were determined in road dust samples from a sub-arctic urban road setting in Norway, and seasonal occurrence profiles were assessed between the studded and the non-studded tire season. The road dust was collected as suspended particulate matter in an aqueous phase with the introduced dust sampler in Scandinavia, the Wet Dust Sampler. The concentrations of the sum of seven benzotriazoles (Σ(7)BTRs) and six benzothiazoles (Σ(6)BTHs) in road dust ranged from 191 to 3054 ng/L and 93.4 to 1903 ng/L, respectively. To the best of our knowledge, 1H­benzotriazole and tolyltriazole are reported for the first time as suitable markers of metal corrosion in vehicles. From the benzothiazole class, 2­thio­benzothiazole was found to be a suitable marker of tire rubber particles, while its methylated derivative, 2­methylthio­benzothiazole, was found to be a marker of chemical leaching. In addition, different types of new unused tires (summer, studded, and non-studded) were analyzed to assess their benzothiazoles and benzotriazoles content. Based on the concentrations found for benzotriazoles and benzothiazoles in airborne particulate matter, human exposure doses were calculated, and the estimated daily intake doses were found on the order of picograms per day.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa