Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37163031

RESUMO

Limb-Girdle Muscular Dystrophy Type-2B/2R is caused by mutations in the dysferlin gene ( DYSF ). This disease has two known pathogenic missense mutations that occur within dysferlin's C2A domain, namely C2A W52R and C2A V67D . Yet, the etiological rationale to explain the disease linkage for these two mutations is still unclear. In this study, we have presented evidence from biophysical, computational, and immunological experiments which suggest that these missense mutations interfere with dysferlin's ability to repair cells. The failure of C2A W52R and C2A V67D to initiate membrane repair arises from their propensity to form stable amyloid. The misfolding of the C2A domain caused by either mutation exposes ß-strands, which are predicted to nucleate classical amyloid structures. When dysferlin C2A amyloid is formed, it triggers the NLRP3 inflammasome, leading to the secretion of inflammatory cytokines, including IL-1ß. The present study suggests that the muscle dysfunction and inflammation evident in Limb-Girdle Muscular Dystrophy types-2B/2R, specifically in cases involving C2A W52R and C2A V67D , as well as other C2 domain mutations with considerable hydrophobic core involvement, may be attributed to this mechanism.

2.
Structure ; 22(1): 104-15, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24239457

RESUMO

Dysferlin plays a critical role in the Ca²âº-dependent repair of microlesions that occur in the muscle sarcolemma. Of the seven C2 domains in dysferlin, only C2A is reported to bind both Ca²âº and phospholipid, thus acting as a key sensor in membrane repair. Dysferlin C2A exists as two isoforms, the "canonical" C2A and C2A variant 1 (C2Av1). Interestingly, these isoforms have markedly different responses to Ca²âº and phospholipid. Structural and thermodynamic analyses are consistent with the canonical C2A domain as a Ca²âº-dependent, phospholipid-binding domain, whereas C2Av1 would likely be Ca²âº-independent under physiological conditions. Additionally, both isoforms display remarkably low free energies of stability, indicative of a highly flexible structure. The inverted ligand preference and flexibility for both C2A isoforms suggest the capability for both constitutive and Ca²âº-regulated effector interactions, an activity that would be essential in its role as a mediator of membrane repair.


Assuntos
Processamento Alternativo , Cálcio/metabolismo , Proteínas de Membrana/química , Proteínas Musculares/química , RNA Mensageiro/genética , Sarcolema/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cristalografia por Raios X , Disferlina , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutagênese Sítio-Dirigida , Mioblastos/citologia , Mioblastos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regeneração , Sarcolema/ultraestrutura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa