Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 591(7849): 327-331, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33597752

RESUMO

Glutamate is the most abundant excitatory neurotransmitter in the central nervous system, and its precise control is vital to maintain normal brain function and to prevent excitotoxicity1. The removal of extracellular glutamate is achieved by plasma-membrane-bound transporters, which couple glutamate transport to sodium, potassium and pH gradients using an elevator mechanism2-5. Glutamate transporters also conduct chloride ions by means of a channel-like process that is thermodynamically uncoupled from transport6-8. However, the molecular mechanisms that enable these dual-function transporters to carry out two seemingly contradictory roles are unknown. Here we report the cryo-electron microscopy structure of a glutamate transporter homologue in an open-channel state, which reveals an aqueous cavity that is formed during the glutamate transport cycle. The functional properties of this cavity, combined with molecular dynamics simulations, reveal it to be an aqueous-accessible chloride permeation pathway that is gated by two hydrophobic regions and is conserved across mammalian and archaeal glutamate transporters. Our findings provide insight into the mechanism by which glutamate transporters support their dual function, and add information that will assist in mapping the complete transport cycle shared by the solute carrier 1A transporter family.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/química , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/ultraestrutura , Animais , Encéfalo/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/ultraestrutura , Cloretos/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , Transportador 1 de Aminoácido Excitatório/química , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 1 de Aminoácido Excitatório/ultraestrutura , Feminino , Ácido Glutâmico/metabolismo , Humanos , Modelos Moleculares , Mutação , Oócitos , Conformação Proteica , Xenopus laevis
2.
RNA ; 29(6): 724-734, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36854607

RESUMO

The GIGYF proteins interact with 4EHP and RNA-associated proteins to elicit transcript-specific translational repression. However, the mechanism by which the GIGYF1/2-4EHP complex is recruited to its target transcripts remain unclear. Here, we report the crystal structures of the GYF domains from GIGYF1 and GIGYF2 in complex with proline-rich sequences from the miRISC-binding proteins TNRC6C and TNRC6A, respectively. The TNRC6 proline-rich motifs bind to a conserved array of aromatic residues on the surface of the GIGYF1/2 GYF domains, thereby bridging 4EHP to Argonaute-miRNA complexes. Our structures also reveal a phenylalanine residue conserved from yeast to human GYF domains that contributes to GIGYF2 thermostability. The molecular details we outline here are likely to be conserved between GIGYF1/2 and other RNA-binding proteins to elicit 4EHP-mediated repression in different biological contexts.


Assuntos
Proteínas de Transporte , MicroRNAs , Humanos , Proteínas de Transporte/metabolismo , Proteínas de Ligação a RNA/metabolismo , MicroRNAs/metabolismo
3.
Structure ; 32(4): 393-399.e3, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38237595

RESUMO

F1Fo ATP synthase interchanges phosphate transfer energy and proton motive force via a rotary catalytic mechanism and isolated F1-ATPase subcomplexes can also hydrolyze ATP to generate rotation of their central γ rotor subunit. As ATP is hydrolyzed, the F1-ATPase cycles through a series of conformational states that mediates unidirectional rotation of the rotor. However, even in the absence of a rotor, the α and ß subunits are still able to pass through a series of conformations, akin to those that generate rotation. Here, we use cryoelectron microscopy to establish the structures of these rotorless states. These structures indicate that cooperativity in this system is likely mediated by contacts between the ß subunit lever domains, irrespective of the presence of the γ rotor subunit. These findings provide insight into how long-range information may be transferred in large biological systems.


Assuntos
Adenosina Trifosfatases , Trifosfato de Adenosina , Hidrólise , Microscopia Crioeletrônica , Subunidades Proteicas/química , Conformação Proteica , Rotação
4.
bioRxiv ; 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39149353

RESUMO

F1Fo ATP synthase is a molecular rotary motor that can generate ATP using a transmembrane proton motive force. Isolated F1-ATPase catalytic cores can hydrolyse ATP, passing through a series of conformational states involving rotation of the central γ rotor subunit and the opening and closing of the catalytic ß subunits. Cooperativity in F1-ATPase has long thought to be conferred through the γ subunit, with three key interaction sites between the γ and ß subunits being identified. Single molecule studies have demonstrated that the F1 complexes lacking the γ axle still "rotate" and hydrolyse ATP, but with less efficiency. We solved the cryogenic electron microscopy structure of an axle-less Bacillus sp. PS3 F1-ATPase. The unexpected binding-dwell conformation of the structure in combination with the observed lack of interactions between the axle-less γ and the open ß subunit suggests that the complete γ subunit is important for coordinating efficient ATP binding of F1-ATPase.

5.
Biochim Biophys Acta Bioenerg ; : 149521, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39428050

RESUMO

F1Fo ATP synthase is a molecular rotary motor that can generate ATP using a transmembrane proton motive force. Isolated F1-ATPase catalytic cores can hydrolyse ATP, passing through a series of conformational states involving rotation of the central γ rotor subunit and the opening and closing of the catalytic ß subunits. Cooperativity in F1-ATPase has long thought to be conferred through the γ subunit, with three key interaction sites between the γ and ß subunits being identified. Single molecule studies have demonstrated that the F1 complexes lacking the γ axle still "rotate" and hydrolyse ATP, but with less efficiency. We solved the cryogenic electron microscopy structure of an axle-less Bacillus sp. PS3 F1-ATPase. The unexpected binding-dwell conformation of the structure in combination with the observed lack of interactions between the axle-less γ and the open ß subunit suggests that the complete γ subunit is important for coordinating efficient ATP binding of F1-ATPase.

6.
Commun Biol ; 6(1): 26, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631659

RESUMO

F1Fo ATP synthase functions as a biological generator and makes a major contribution to cellular energy production. Proton flow generates rotation in the Fo motor that is transferred to the F1 motor to catalyze ATP production, with flexible F1/Fo coupling required for efficient catalysis. F1Fo ATP synthase can also operate in reverse, hydrolyzing ATP and pumping protons, and in bacteria this function can be regulated by an inhibitory ε subunit. Here we present cryo-EM data showing E. coli F1Fo ATP synthase in different rotational and inhibited sub-states, observed following incubation with 10 mM MgATP. Our structures demonstrate how structural transitions within the inhibitory ε subunit induce torsional movement in the central stalk, thereby enabling its rotation within the Fο motor. This highlights the importance of the central rotor for flexible coupling of the F1 and Fo motors and provides further insight into the regulatory mechanism mediated by subunit ε.


Assuntos
Trifosfato de Adenosina , Escherichia coli
7.
Nat Commun ; 14(1): 6374, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821493

RESUMO

Organic Cation Transporter 1 (OCT1) plays a crucial role in hepatic metabolism by mediating the uptake of a range of metabolites and drugs. Genetic variations can alter the efficacy and safety of compounds transported by OCT1, such as those used for cardiovascular, oncological, and psychological indications. Despite its importance in drug pharmacokinetics, the substrate selectivity and underlying structural mechanisms of OCT1 remain poorly understood. Here, we present cryo-EM structures of full-length human OCT1 in the inward-open conformation, both ligand-free and drug-bound, indicating the basis for its broad substrate recognition. Comparison of our structures with those of outward-open OCTs provides molecular insight into the alternating access mechanism of OCTs. We observe that hydrophobic gates stabilize the inward-facing conformation, whereas charge neutralization in the binding pocket facilitates the release of cationic substrates. These findings provide a framework for understanding the structural basis of the promiscuity of drug binding and substrate translocation in OCT1.


Assuntos
Proteínas de Transporte de Cátions Orgânicos , Transportador 1 de Cátions Orgânicos , Humanos , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/química , Transportador 1 de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/química , Transporte Biológico , Transportador 2 de Cátion Orgânico/metabolismo
8.
Nat Commun ; 14(1): 687, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755042

RESUMO

Emerging variants of concern (VOCs) are threatening to limit the effectiveness of SARS-CoV-2 monoclonal antibodies and vaccines currently used in clinical practice; broadly neutralizing antibodies and strategies for their identification are therefore urgently required. Here we demonstrate that broadly neutralizing antibodies can be isolated from peripheral blood mononuclear cells of convalescent patients using SARS-CoV-2 receptor binding domains carrying epitope-specific mutations. This is exemplified by two human antibodies, GAR05, binding to epitope class 1, and GAR12, binding to a new epitope class 6 (located between class 3 and 5). Both antibodies broadly neutralize VOCs, exceeding the potency of the clinical monoclonal sotrovimab (S309) by orders of magnitude. They also provide prophylactic and therapeutic in vivo protection of female hACE2 mice against viral challenge. Our results indicate that exposure to SARS-CoV-2 induces antibodies that maintain broad neutralization against emerging VOCs using two unique strategies: either by targeting the divergent class 1 epitope in a manner resistant to VOCs (ACE2 mimicry, as illustrated by GAR05 and mAbs P2C-1F11/S2K14); or alternatively, by targeting rare and highly conserved epitopes, such as the new class 6 epitope identified here (as illustrated by GAR12). Our results provide guidance for next generation monoclonal antibody development and vaccine design.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Feminino , Animais , Camundongos , Anticorpos Amplamente Neutralizantes , Leucócitos Mononucleares , Anticorpos Antivirais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Epitopos , Glicoproteína da Espícula de Coronavírus/genética , Testes de Neutralização
9.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 3): 79-84, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33682792

RESUMO

Chaperonins are biomolecular complexes that assist in protein folding. Thermophilic factor 55 (TF55) is a group II chaperonin found in the archaeal genus Sulfolobus that has α, ß and γ subunits. Using cryo-electron microscopy, structures of the ß-only complex of S. solfataricus TF55 (TF55ß) were determined to 3.6-4.2 Šresolution. The structures of the TF55ß complexes formed in the presence of ADP or ATP highlighted an open state in which nucleotide exchange can occur before progressing in the refolding cycle.


Assuntos
Proteínas Arqueais/ultraestrutura , Chaperoninas/ultraestrutura , Microscopia Crioeletrônica , Sulfolobus solfataricus/ultraestrutura , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Modelos Moleculares , Conformação Proteica
10.
Nat Commun ; 12(1): 4690, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344897

RESUMO

F1Fo ATP synthase interchanges phosphate transfer energy and proton motive force via a rotary catalysis mechanism. Isolated F1-ATPase catalytic cores can hydrolyze ATP, passing through six intermediate conformational states to generate rotation of their central γ-subunit. Although previous structural studies have contributed greatly to understanding rotary catalysis in the F1-ATPase, the structure of an important conformational state (the binding-dwell) has remained elusive. Here, we exploit temperature and time-resolved cryo-electron microscopy to determine the structure of the binding- and catalytic-dwell states of Bacillus PS3 F1-ATPase. Each state shows three catalytic ß-subunits in different conformations, establishing the complete set of six states taken up during the catalytic cycle and providing molecular details for both the ATP binding and hydrolysis strokes. We also identify a potential phosphate-release tunnel that indicates how ADP and phosphate binding are coordinated during synthesis. Overall these findings provide a structural basis for the entire F1-ATPase catalytic cycle.


Assuntos
ATPases Bacterianas Próton-Translocadoras/química , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Bacillus/enzimologia , ATPases Bacterianas Próton-Translocadoras/genética , ATPases Bacterianas Próton-Translocadoras/metabolismo , Sítios de Ligação , Catálise , Microscopia Crioeletrônica , Hidrólise , Mutação , Fosfatos/química , Fosfatos/metabolismo , Ligação Proteica , Conformação Proteica , Subunidades Proteicas , Rotação , Temperatura
11.
MAbs ; 13(1): 1922134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34024246

RESUMO

Antibodies against coronavirus spike protein potently protect against infection and disease, but whether such protection can be extended to variant coronaviruses is unclear. This is exemplified by a set of iconic and well-characterized monoclonal antibodies developed after the 2003 SARS outbreak, including mAbs m396, CR3022, CR3014 and 80R, which potently neutralize SARS-CoV-1, but not SARS-CoV-2. Here, we explore antibody engineering strategies to change and broaden their specificity, enabling nanomolar binding and potent neutralization of SARS-CoV-2. Intriguingly, while many of the matured clones maintained specificity of the parental antibody, new specificities were also observed, which was further confirmed by X-ray crystallography and cryo-electron microscopy, indicating that a limited set of VH antibody domains can give rise to variants targeting diverse epitopes, when paired with a diverse VL repertoire. Our findings open up over 15 years of antibody development efforts against SARS-CoV-1 to the SARS-CoV-2 field and outline general principles for the maturation of antibody specificity against emerging viruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Especificidade de Anticorpos , Reações Cruzadas , Humanos , Mutagênese Sítio-Dirigida
12.
Biochemistry ; 49(11): 2335-45, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20108977

RESUMO

The Lsm proteins organize as heteroheptameric ring assemblies capable of binding RNA substrates and ancillary protein factors. We have constructed simplified Lsm polyproteins that organize as multimeric ring structures as analogues of the functional Lsm complexes. Polyproteins Lsm[2+3], Lsm[4+1], and Lsm[5+6] incorporate natural sequence extensions as linker peptides between the core Lsm domains. In solution, the recombinant products organize as stable ring oligomers (75 A wide, 20 A pores) in discrete tetrameric and octameric forms. Following immobilization, the polyproteins successfully act as affinity pull-down ligands for proteins within yeast lysate, including native Lsm proteins. Interaction partners were consistent with current models of the mixed Lsm ring assembly in vivo but also suggest that dynamic rearrangements of Lsm protein complexes can occur. The Lsm polyprotein ring complexes were seen in gel shift assays to have a preference for U-rich RNA sequences, with tightest binding measured for Lsm[2+3] with U(10). Polyprotein rings containing truncated forms of Lsm1 and Lsm4 were found to associate with translation, initiation, and elongation protein factors in an RNA-dependent manner. Our findings suggest Lsm1 and/or Lsm4 can interact with translationally active mRNA.


Assuntos
Biossíntese de Proteínas , Engenharia de Proteínas , RNA Fúngico/genética , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Uracila , Sequência de Aminoácidos , Composição de Bases , Modelos Moleculares , Dados de Sequência Molecular , Poliproteínas/química , Poliproteínas/genética , Poliproteínas/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , RNA Fúngico/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/química , Soluções , Especificidade por Substrato
13.
Methods Mol Biol ; 2073: 73-84, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31612437

RESUMO

ATP synthase is an essential enzyme found in all known forms of life, generating the majority of cellular energy via a rotary catalytic mechanism. Here, we describe the in-depth methods for expression, purification, and functional assessment of E. coli ATP synthase.


Assuntos
ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , ATPases Translocadoras de Prótons/química
14.
Nat Commun ; 11(1): 2615, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457314

RESUMO

F1Fo ATP synthase functions as a biological rotary generator that makes a major contribution to cellular energy production. It comprises two molecular motors coupled together by a central and a peripheral stalk. Proton flow through the Fo motor generates rotation of the central stalk, inducing conformational changes in the F1 motor that catalyzes ATP production. Here we present nine cryo-EM structures of E. coli ATP synthase to 3.1-3.4 Å resolution, in four discrete rotational sub-states, which provide a comprehensive structural model for this widely studied bacterial molecular machine. We observe torsional flexing of the entire complex and a rotational sub-step of Fo associated with long-range conformational changes that indicates how this flexibility accommodates the mismatch between the 3- and 10-fold symmetries of the F1 and Fo motors. We also identify density likely corresponding to lipid molecules that may contribute to the rotor/stator interaction within the Fo motor.


Assuntos
Proteínas de Escherichia coli/química , ATPases Translocadoras de Prótons/química , Difosfato de Adenosina/metabolismo , Microscopia Crioeletrônica , Proteínas de Escherichia coli/metabolismo , Lipídeos/química , Modelos Moleculares , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Rotação , Relação Estrutura-Atividade
15.
Elife ; 82019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30912741

RESUMO

ATP synthase produces the majority of cellular energy in most cells. We have previously reported cryo-EM maps of autoinhibited E. coli ATP synthase imaged without addition of nucleotide (Sobti et al. 2016), indicating that the subunit ε engages the α, ß and γ subunits to lock the enzyme and prevent functional rotation. Here we present multiple cryo-EM reconstructions of the enzyme frozen after the addition of MgATP to identify the changes that occur when this ε inhibition is removed. The maps generated show that, after exposure to MgATP, E. coli ATP synthase adopts a different conformation with a catalytic subunit changing conformation substantially and the ε C-terminal domain transitioning via an intermediate 'half-up' state to a condensed 'down' state. This work provides direct evidence for unique conformational states that occur in E. coli ATP synthase when ATP binding prevents the ε C-terminal domain from entering the inhibitory 'up' state.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/ultraestrutura , Microscopia Crioeletrônica , Conformação Proteica , Subunidades Proteicas/química
16.
Elife ; 52016 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-28001127

RESUMO

A molecular model that provides a framework for interpreting the wealth of functional information obtained on the E. coli F-ATP synthase has been generated using cryo-electron microscopy. Three different states that relate to rotation of the enzyme were observed, with the central stalk's ε subunit in an extended autoinhibitory conformation in all three states. The Fo motor comprises of seven transmembrane helices and a decameric c-ring and invaginations on either side of the membrane indicate the entry and exit channels for protons. The proton translocating subunit contains near parallel helices inclined by ~30° to the membrane, a feature now synonymous with rotary ATPases. For the first time in this rotary ATPase subtype, the peripheral stalk is resolved over its entire length of the complex, revealing the F1 attachment points and a coiled-coil that bifurcates toward the membrane with its helices separating to embrace subunit a from two sides.


Assuntos
ATPases Bacterianas Próton-Translocadoras/ultraestrutura , Microscopia Crioeletrônica , Escherichia coli/enzimologia
17.
Curr Opin Struct Biol ; 25: 40-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24878343

RESUMO

Recent work has provided the detailed overall architecture and subunit composition of three subtypes of rotary ATPases. Composite models of F-type, V-type and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual components into electron microscopy derived envelopes of the intact enzymes. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria. An inherent flexibility in rotary ATPases observed by different techniques suggests greater dynamics during operation than previously envisioned. The concerted movement of subunits within the complex might provide means of regulation and information transfer between distant parts of rotary ATPases thereby fine tuning these molecular machines to their cellular environment, while optimizing their efficiency.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas Motores Moleculares/metabolismo , Rotação , Adenosina Trifosfatases/química , Proteínas Motores Moleculares/química , Multimerização Proteica , Estrutura Quaternária de Proteína
18.
Methods Mol Biol ; 996: 233-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23504428

RESUMO

The rational engineering of proteins is driven by contemporary needs for new and altered biomolecular forms. Utilizing manipulative procedures of molecular biology, it is relatively straightforward to alter protein structure and function to create mutated or fused sequences. We here give an overview of procedures and strategies for site-directed mutagenesis, construction of fusion proteins, and insertion of tags. The design of new protein constructs as well as their over-expression as recombinant products is considered. We also summarize approaches for the engineering of protein complexes by co-expression, a valuable route to generate bioactive multicomponent systems.


Assuntos
Engenharia de Proteínas/métodos , Clonagem Molecular , Códon , Escherichia coli , Vetores Genéticos , Mutagênese Sítio-Dirigida/métodos , Fases de Leitura Aberta , Reação em Cadeia da Polimerase/métodos , Biossíntese de Proteínas , Proteólise , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética
19.
Bioarchitecture ; 3(1): 2-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23369889

RESUMO

Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual "machine elements" to the requirement of the right "fuel" and "oil" for different types of motors.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica
20.
J Mol Biol ; 377(5): 1357-71, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18329667

RESUMO

Sm and Sm-like (Lsm) proteins are core components of the ribonucleoprotein complexes essential to key nucleic acid processing events within the eukaryotic cell. They assemble as polyprotein ring scaffolds that have the capacity to bind RNA substrates and other necessary protein factors. The crystal structure of yeast Lsm3 reveals a new organisation of the L/Sm beta-propeller ring, containing eight protein subunits. Little distortion of the characteristic L/Sm fold is required to form the octamer, indicating that the eukaryotic Lsm ring may be more pliable than previously thought. The homomeric Lsm3 octamer is found to successfully recruit Lsm6, Lsm2 and Lsm5 directly from yeast lysate. Our crystal structure shows the C-terminal tail of each Lsm3 subunit to be engaged in connections across rings through specific beta-sheet interactions with elongated loops protruding from neighbouring octamers. While these loops are of distinct length for each Lsm protein and generally comprise low-complexity polar sequences, several Lsm C-termini comprise hydrophobic sequences suitable for beta-sheet interactions. The Lsm3 structure thus provides evidence for protein-protein interactions likely utilised by the highly variable Lsm loops and termini in the recruitment of RNA processing factors to mixed Lsm ring scaffolds. Our coordinates also provide updated homology models for the active Lsm[1-7] and Lsm[2-8] heptameric rings.


Assuntos
Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa