Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 17(10)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019945

RESUMO

The measurement of chemical and biomedical parameters can take advantage of the features exclusively offered by optical fibre: passive nature, electromagnetic immunity and chemical stability are some of the most relevant ones. The small dimensions of the fibre generally require that the sensing material be loaded into a supporting matrix whose morphology is adjusted at a nanometric scale. Thanks to the advances in nanotechnology new deposition methods have been developed: they allow reagents from different chemical nature to be embedded into films with a thickness always below a few microns that also show a relevant aspect ratio to ensure a high transduction interface. This review reveals some of the main techniques that are currently been employed to develop this kind of sensors, describing in detail both the resulting supporting matrices as well as the sensing materials used. The main objective is to offer a general view of the state of the art to expose the main challenges and chances that this technology is facing currently.

2.
Opt Express ; 24(16): 17680-5, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27505736

RESUMO

This work presents a refractive index sensor based on a long period fiber grating (LPFG) made in a reduced cladding fiber whose low order cladding modes have the turning point at large wavelengths. The combination of these parameters results in an improved sensitivity of 8734 nm/refractive index unit (RIU) for the LP0,3 mode in the 1400-1650 wavelength range. This value is similar to that obtained with thin-film coated LPFGs, which permits to avoid the coating deposition step. The numerical simulations are in agreement with the experimental results.

3.
Opt Express ; 23(3): 1930-7, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836065

RESUMO

Integrated optical devices comprised of multiple material systems are able to achieve unique performance characteristics, enabling applications in sensing and in telecommunications. Due to ease of fabrication, the majority of previous work has focused on polymer-dielectric or polymer-semiconductor systems. However, the environmental stability of polymers is limited. In the present work, a hybrid device comprised of an indium tin oxide (ITO) coating on a silicon dioxide toroidal resonant cavity is fabricated. Finite element method simulations of the optical field in the multi-material device are performed, and the optical mode profile is significantly altered by the high index film. The quality factor is also measured and is material loss limited. Additionally, its performance as a temperature sensor is characterized. Due to the high thermo-optic coefficient of ITO and the localization of the optical field in the ITO layer, the hybrid temperature sensor demonstrates a nearly 3-fold improvement in performance over the conventional silica device.


Assuntos
Dispositivos Ópticos , Temperatura , Análise de Elementos Finitos , Modelos Teóricos , Dispositivos Ópticos/estatística & dados numéricos , Dióxido de Silício , Termômetros/estatística & dados numéricos , Compostos de Estanho
4.
Appl Opt ; 53(18): 3913-9, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24979423

RESUMO

Thin-film coated single-mode-multimode-single-mode (SMS) structures have been analyzed both theoretically and experimentally with the aim of detecting different refractive indices. By adequate selection of the thickness of the thin film and of the diameter of the multimode segment in the SMS structure, a seven-fold improvement can be obtained in the sensitivity of the device to the surrounding medium refractive index, achieving a maximum sensitivity of 1199.18 nm/refractive index unit for the range of refractive indices from 1.321 to 1.382. Using layer-by-layer self-assembly for deposition, both on the cladding and on the tip of the multimode segment, allows the reflected power to increase, which avoids the application of a mirror on the tip of the multimode segment.

5.
Opt Express ; 21(10): 12668-82, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23736487

RESUMO

By coating a single-mode-multimode-single-mode (SMS) structure with a high refractive index thin-film it is possible to obtain a transition of modes for specific combinations of thin-film thickness, thin-film refractive index and surrounding medium refractive index, which permits to develop devices with a high sensitivity to specific parameters. In order to gain a better knowledge of the phenomenon the experimental results are corroborated numerically with the Transfer-Matrix-Method. The influence of losses in the thin-film has also been studied. The results obtained prove that a thin-film coated SMS structure is a simple and cost-effective platform for development of sensors and optical filters.


Assuntos
Membranas Artificiais , Refratometria/instrumentação , Refratometria/métodos , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa