Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Muscle Nerve ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855810

RESUMO

INTRODUCTION/AIMS: Myotonia congenita (MC) is the most common hereditary channelopathy in humans. Characterized by muscle stiffness, MC may be transmitted as either an autosomal dominant (Thomsen) or a recessive (Becker) disorder. MC is caused by variants in the voltage-gated chloride channel 1 (CLCN1) gene, important for the normal repolarization of the muscle action potential. More than 250 disease-causing variants in the CLCN1 gene have been reported. This study provides an MC genotype-phenotype spectrum in a large cohort of Greek patients and focuses on novel variants and disease epidemiology, including additional insights for the variant CLCN1:c.501C > G. METHODS: Sanger sequencing for the entire coding region of the CLCN1 gene was performed. Targeted segregation analysis of likely candidate variants in additional family members was performed. Variant classification was based on American College of Medical Genetics (ACMG) guidelines. RESULTS: Sixty-one patients from 47 unrelated families were identified, consisting of 51 probands with Becker MC (84%) and 10 with Thomsen MC (16%). Among the different variants detected, 11 were novel and 16 were previously reported. The three most prevalent variants were c.501C > G, c.2680C > T, and c.1649C > G. Additionally, c.501C > G was detected in seven Becker cases in-cis with the c.1649C > G. DISCUSSION: The large number of patients in whom a diagnosis was established allowed the characterization of genotype-phenotype correlations with respect to both previously reported and novel findings. For the c.501C > G (p.Phe167Leu) variant a likely nonpathogenic property is suggested, as it only seems to act as an aggravating modifying factor in cases in which a pathogenic variant triggers phenotypic expression.

2.
Brain ; 146(2): 534-548, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35979925

RESUMO

We describe an autosomal dominant disorder associated with loss-of-function variants in the Cell cycle associated protein 1 (CAPRIN1; MIM*601178). CAPRIN1 encodes a ubiquitous protein that regulates the transport and translation of neuronal mRNAs critical for synaptic plasticity, as well as mRNAs encoding proteins important for cell proliferation and migration in multiple cell types. We identified 12 cases with loss-of-function CAPRIN1 variants, and a neurodevelopmental phenotype characterized by language impairment/speech delay (100%), intellectual disability (83%), attention deficit hyperactivity disorder (82%) and autism spectrum disorder (67%). Affected individuals also had respiratory problems (50%), limb/skeletal anomalies (50%), developmental delay (42%) feeding difficulties (33%), seizures (33%) and ophthalmologic problems (33%). In patient-derived lymphoblasts and fibroblasts, we showed a monoallelic expression of the wild-type allele, and a reduction of the transcript and protein compatible with a half dose. To further study pathogenic mechanisms, we generated sCAPRIN1+/- human induced pluripotent stem cells via CRISPR-Cas9 mutagenesis and differentiated them into neuronal progenitor cells and cortical neurons. CAPRIN1 loss caused reduced neuronal processes, overall disruption of the neuronal organization and an increased neuronal degeneration. We also observed an alteration of mRNA translation in CAPRIN1+/- neurons, compatible with its suggested function as translational inhibitor. CAPRIN1+/- neurons also showed an impaired calcium signalling and increased oxidative stress, two mechanisms that may directly affect neuronal networks development, maintenance and function. According to what was previously observed in the mouse model, measurements of activity in CAPRIN1+/- neurons via micro-electrode arrays indicated lower spike rates and bursts, with an overall reduced activity. In conclusion, we demonstrate that CAPRIN1 haploinsufficiency causes a novel autosomal dominant neurodevelopmental disorder and identify morphological and functional alterations associated with this disorder in human neuronal models.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Células-Tronco Pluripotentes Induzidas , Transtornos do Desenvolvimento da Linguagem , Transtornos do Neurodesenvolvimento , Animais , Camundongos , Humanos , Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/complicações , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Proteínas de Ciclo Celular/genética
3.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542374

RESUMO

In this short review, we presented and discussed studies on the expression of globin genes in ß-thalassemia, focusing on the impact of α-globin gene expression and α-globin modifiers on the phenotype and clinical severity of ß-thalassemia. We first discussed the impact of the excess of free α-globin on the phenotype of ß-thalassemia. We then reviewed studies focusing on the expression of α-globin-stabilizing protein (AHSP), as a potential strategy of counteracting the effects of the excess of free α-globin on erythroid cells. Alternative processes controlling α-globin excess were also considered, including the activation of autophagy by ß-thalassemia erythroid cells. Altogether, the studies reviewed herein are expected to have a potential impact on the management of patients with ß-thalassemia and other hemoglobinopathies for which reduction in α-globin excess is clinically beneficial.


Assuntos
Hemoglobinopatias , Talassemia beta , Humanos , Talassemia beta/genética , alfa-Globinas/genética , alfa-Globinas/metabolismo , Hemoglobinopatias/genética , Fenótipo , Expressão Gênica , Proteínas Sanguíneas/genética , Chaperonas Moleculares/genética
4.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891831

RESUMO

SCN1A, the gene encoding for the Nav1.1 channel, exhibits dominant interneuron-specific expression, whereby variants disrupting the channel's function affect the initiation and propagation of action potentials and neuronal excitability causing various types of epilepsy. Dravet syndrome (DS), the first described clinical presentation of SCN1A channelopathy, is characterized by severe myoclonic epilepsy in infancy (SMEI). Variants' characteristics and other genetic or epigenetic factors lead to extreme clinical heterogeneity, ranging from non-epileptic conditions to developmental and epileptic encephalopathy (DEE). This current study reports on findings from 343 patients referred by physicians in hospitals and tertiary care centers in Greece between 2017 and 2023. Positive family history for specific neurologic disorders was disclosed in 89 cases and the one common clinical feature was the onset of seizures, at a mean age of 17 months (range from birth to 15 years old). Most patients were specifically referred for SCN1A investigation (Sanger Sequencing and MLPA) and only five for next generation sequencing. Twenty-six SCN1A variants were detected, including nine novel causative variants (c.4567A>Τ, c.5564C>A, c.2176+2T>C, c.3646G>C, c.4331C>A, c.1130_1131delGAinsAC, c.1574_1580delCTGAGGA, c.4620A>G and c.5462A>C), and are herein presented, along with subsequent genotype-phenotype associations. The identification of novel variants complements SCN1A databases extending our expertise on genetic counseling and patient and family management including gene-based personalized interventions.


Assuntos
Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.1 , Fenótipo , Humanos , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Masculino , Feminino , Criança , Adolescente , Lactente , Pré-Escolar , Epilepsia/genética , Recém-Nascido , Mutação , Adulto , Adulto Jovem
5.
Am J Med Genet A ; 188(12): 3563-3566, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36135319

RESUMO

ATP6V1B2 pathogenic variants are linked with variable phenotypes, such as dominant deafness-onychodystrophy syndrome (DDOD), autosomal dominant Zimmermann-Laband syndrome type 2 (ZLS2), and some cases of DOORS (deafness, onychodystrophy, osteodystrophy, intellectual disability [ID], and seizures). Epilepsy was first linked to ATP6V1B2, when the p.(Glu374Gln) missense variant was detected in a patient with ID and seizures, but without characteristic features of DDOD or ZLS2 syndromes. We herein report a novel pathogenic ATP6V1B2:p.Glu374Gly variant detected in an adult patient with ID and myoclonic-atonic seizures. The (re)occurrence of different variants affecting the same highly conserved hydrophilic glutamic acid on position 374 of the V-proton ATPase subunit B, indicates a potential novel pathogenic hotspot and a critical role for the specific residue in the development of epilepsy. ATP6V1B2 gene defects should be considered when analyzing patients with epilepsy, even in the absence of most cardinal features of DDOD, DOORS, or ZLS such as deafness, onychodystrophy, and osteodystrophy.


Assuntos
Surdez , Epilepsia , Deficiência Intelectual , Doenças da Unha , Unhas Malformadas , ATPases Vacuolares Próton-Translocadoras , Humanos , Epilepsia/genética , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Unhas Malformadas/genética , Fenótipo , Convulsões , Síndrome , ATPases Vacuolares Próton-Translocadoras/genética
6.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555146

RESUMO

Myotonic Dystrophies (DM, Dystrophia Myotonia) are autosomal dominant inherited myopathies with a high prevalence across different ethnic regions. Despite some differences, mainly due to the pattern of muscle involvement and the age of onset, both forms, DM1 and DM2, share many clinical and genetic similarities. In this study, we retrospectively analyzed the medical record files of 561 Greek patients, 434 with DM1 and 127 with DM2 diagnosed in two large academic centers between 1994-2020. The mean age at onset of symptoms was 26.2 ± 15.3 years in DM1 versus 44.4 ± 17.0 years in DM2 patients, while the delay of diagnosis was 10 and 7 years for DM1 and DM2 patients, respectively. Muscle weakness was the first symptom in both types, while myotonia was more frequent in DM1 patients. Multisystemic involvement was detected in the great majority of patients, with cataracts being one of the most common extramuscular manifestations, even in the early stages of disease expression. In conclusion, the present work, despite some limitations arising from the retrospective collection of data, is the first record of a large number of Greek patients with myotonic dystrophy and emphasizes the need for specialized neuromuscular centers that can provide genetic counseling and a multidisciplinary approach.


Assuntos
Miotonia , Distrofia Miotônica , Humanos , Distrofia Miotônica/epidemiologia , Distrofia Miotônica/genética , Estudos Transversais , Estudos Retrospectivos , Grécia/epidemiologia
7.
Am J Med Genet A ; 185(8): 2561-2571, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34008892

RESUMO

About 6000 to 7000 different rare disorders with suspected genetic etiologies have been described and almost 4500 causative gene(s) have been identified. The advent of next-generation sequencing (NGS) technologies has revolutionized genomic research and diagnostics, representing a major advance in the identification of pathogenic genetic variations. This study presents a 3-year experience from an academic genetics center, where 400 patients were referred for genetic analysis of disorders with unknown etiology. A phenotype-driven proband-only exome sequencing (ES) strategy was applied for the investigation of rare disorders, in the context of optimizing ES diagnostic yield and minimizing costs and time to definitive diagnosis. Overall molecular diagnostic yield reached 53% and characterized 243 pathogenic variants in 210 cases, 85 of which were novel and 148 known, contributing information to the community of disease and variant databases. ES provides an opportunity to resolve the genetic etiology of disorders and support appropriate medical management and genetic counseling. In cases with complex phenotypes, the identification of complex genotypes may contribute to more comprehensive clinical management. In the context of effective multidisciplinary collaboration between clinicians and laboratories, ES provides an efficient and appropriate tool for first-tier genomic analysis.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Variação Genética , Fenótipo , Tomada de Decisão Clínica , Gerenciamento Clínico , Feminino , Estudos de Associação Genética/métodos , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Doenças Raras , Sequenciamento do Exoma , Fluxo de Trabalho
8.
Gynecol Endocrinol ; 37(4): 377-381, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33356667

RESUMO

OBJECTIVE: To describe a novel unbalanced X;21 translocation resulting in a derivative pseudodicentric chromosome X;21 lacking the critical region for ovarian development and function, in a 16-year-old girl referred for cytogenetic analysis due to primary amenorrhea and Turner-like features. METHODS: Cytogenetic analysis of the proband and her parents was performed on peripheral blood lymphocytes by GTG banding. Molecular cytogenetic FISH analysis was performed on metaphase preparations, using X chromosome centromeric probe and telomeric and pancentromeric peptide nucleic acid (PNA) analog probes. The HUMARA assay as well as methylation studies for PCSK1N and FMR-1 loci were performed. RESULTS: Cytogenetic analysis revealed a de novo unbalanced X;21 translocation, described as 45,X,der(X)t(X;21)(q22.2;p11.2),-21. FISH analysis showed that the derivative X chromosome carried both the X and 21 centromeres, as well as, the Xp and 21q telomeres. The karyotype was thus reevaluated as 45,X,psu dic(21;X)(21qter→21p13::Xq22.2→Xpter),-21. X inactivation studies revealed that the derivative chromosome was of paternal origin and confirmed the selective inactivation of the derivative X segment of the pseudodicentric chromosome. CONCLUSIONS: Primary amenorrhea and other Turner-like characteristics of the proband are apparently due to the loss of the Xq22.2→Xqter critical region which contains critical genes for the ovarian development and function. The chromosome X segment of the derivative pseudodicentric chromosome is selectively inactivated, but inactivation does not seem to spread onto the translocated chromosome 21, accounting probably for the lack of severe clinical consequences which would result from monosomy 21.


Assuntos
Cromossomos Humanos Par 21/genética , Cromossomos Humanos X/genética , Translocação Genética/genética , Síndrome de Turner/genética , Adolescente , Feminino , Humanos , Hibridização in Situ Fluorescente , Síndrome de Turner/fisiopatologia
9.
Pediatr Blood Cancer ; 64(11)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28509441

RESUMO

This study presents the clinical phenotype and molecular analysis findings from 11 patients recorded in the Greek Shwachman-Diamond syndrome (SDS) Registry. The most severely affected patient in our registry was diagnosed at birth and is the first patient reported to require bone marrow transplantation so early in life. Severe psoriasis, a feature not previously reported in SDS, was observed in one patient. Mutations in the Shwachman-Bodian-Diamond syndrome gene (SBDS) were found in all patients. Cytogenetic analyses revealed clonal abnormalities, one novel, in two patients.


Assuntos
Doenças da Medula Óssea/genética , Doenças da Medula Óssea/patologia , Insuficiência Pancreática Exócrina/genética , Insuficiência Pancreática Exócrina/patologia , Lipomatose/genética , Lipomatose/patologia , Mutação/genética , Proteínas/genética , Sistema de Registros/estatística & dados numéricos , Adolescente , Pré-Escolar , Feminino , Grécia , Humanos , Lactente , Masculino , Fenótipo , Prognóstico , Síndrome de Shwachman-Diamond
10.
Birth Defects Res A Clin Mol Teratol ; 106(7): 536-41, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26969897

RESUMO

BACKGROUND: Antley-Bixler syndrome (ABS) is an exceptionally rare craniosynostosis syndrome that can be accompanied by disordered steroidogenesis, and is mainly caused by mutations in the POR gene, inherited in an autosomal recessive manner. Here we report the prenatal and postmortem findings of three sibling fetuses with ABS as a result of compound heterozygosity of a paternal submicroscopic deletion and a maternal missense mutation in the POR gene. METHODS: Prenatal ultrasound and postmortem examination were performed in three sibling fetuses with termination of pregnancy at 22, 23, and 17 weeks of gestation, respectively. Molecular analysis of fetus 2 and 3 included (a) bidirectional sequencing of exon 8 of the POR gene after amplification of the specific locus by polymerase chain reaction, to detect single nucleotide variants (SNVs) and (b) high resolution comparative genomic hybridization (CGH) positive single nucleotide polymorphism array CGH (aCGH) analysis to detect copy number variants (CNVs), copy neutral areas of loss of heterozygosity and uniparental disomy. RESULTS: The diagnosis of ABS was suggested by the postmortem examination findings. The combination of the POR gene molecular analysis and aCGH revealed a compound heterozygous genotype of a maternal SNV (p.A287P) and a paternal CNV (NC_000007.13:g.(?_75608488)_(75615534_?)del). CONCLUSION: To the best of our knowledge, these sibling fetuses add to the few reported cases of ABS, caused by a combination of a SNV and a CNV in the POR gene. The detailed description of the pathologic and radiographic findings of second trimester fetuses affected with ABS adds novel knowledge concerning the early ABS phenotype, in lack of previous relevant reports. Birth Defects Research (Part A) 106:536-541, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Fenótipo de Síndrome de Antley-Bixler , Deleção Cromossômica , Sistema Enzimático do Citocromo P-450/genética , Feto , Heterozigoto , Irmãos , Fenótipo de Síndrome de Antley-Bixler/diagnóstico por imagem , Fenótipo de Síndrome de Antley-Bixler/genética , Feminino , Feto/anormalidades , Feto/diagnóstico por imagem , Humanos , Masculino
11.
Mol Cell Probes ; 30(4): 254-260, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27417533

RESUMO

Dystrophinopathies are allelic X-linked myopathies caused by large deletions/duplications or small lesions along the DMD gene. An unexpected dynamic trinucleotide (GAA) expansion, ranging from ∼59 to 82 pure GAA repeats, within the DMD intron 62, was revealed to segregate through three family generations. From the pedigree, two female patients were referred for DMD investigation due to chronic myopathy and a muscle biopsy compatible with dystrophinopathy. As the size of the GAA repeat is limited to 11-33 within the general population our findings may provide a novel insight towards a Trinucleotide Repeat Expansion. Whether this TNR has an impact on the reported phenotype remains to be resolved.


Assuntos
Distrofina/genética , Repetições de Trinucleotídeos/genética , Adolescente , Adulto , Sequência de Bases , Criança , Metilação de DNA/genética , Distrofina/química , Feminino , Humanos , Masculino , Distrofia Muscular de Duchenne/genética , Linhagem
12.
BMC Med Genet ; 16: 30, 2015 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-25943194

RESUMO

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) is a rare pediatric overgrowth disorder with a variable clinical phenotype caused by deregulation affecting imprinted genes in the chromosomal region 11p15. Alterations of the imprinting control region 1 (ICR1) at the IGF2/H19 locus resulting in biallelic expression of IGF2 and biallelic silencing of H19 account for approximately 10% of patients with BWS. The majority of these patients have epimutations of the ICR1 without detectable DNA sequence changes. Only a few patients were found to have deletions. Most of these deletions are small affecting different parts of the ICR1 differentially methylated region (ICR1-DMR) removing target sequences for CTCF. Only a very few deletions reported so far include the H19 gene in addition to the CTCF binding sites. None of these deletions include IGF2. CASE PRESENTATION: A male patient was born with hypotonia, facial dysmorphisms and hypoglycemia suggestive of Beckwith-Wiedemann syndrome. Using methylation-specific (MS)-MLPA (Multiplex ligation-dependent probe amplification) we have identified a maternally inherited large deletion of the ICR1 region in a patient and his mother. The deletion results in a variable clinical expression with a classical BWS in the mother and a more severe presentation of BWS in her son. By genome-wide SNP array analysis the deletion was found to span ~100 kb genomic DNA including the ICR1DMR, H19, two adjacent non-imprinted genes and two of three predicted enhancer elements downstream to H19. Methylation analysis by deep bisulfite next generation sequencing revealed hypermethylation of the maternal allele at the IGF2 locus in both, mother and child, although IGF2 is not affected by the deletion. CONCLUSIONS: We here report on a novel large familial deletion of the ICR1 region in a BWS family. Due to the deletion of the ICR1-DMR CTCF binding cannot take place and the residual enhancer elements have access to the IGF2 promoters. The aberrant methylation (hypermethylation) of the maternal IGF2 allele in both affected family members may reflect the active state of the normally silenced maternal IGF2 copy and can be a consequence of the deletion. The deletion results in a variable clinical phenotype and expression.


Assuntos
Síndrome de Beckwith-Wiedemann/genética , Elementos Facilitadores Genéticos/genética , Loci Gênicos/genética , Deleção de Sequência , Adulto , Análise Citogenética , Metilação de DNA , Feminino , Humanos , Recém-Nascido , Fator de Crescimento Insulin-Like II/genética , Masculino , Fenótipo , Gravidez
13.
Pediatr Blood Cancer ; 61(12): 2249-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25132370

RESUMO

BACKGROUND: Diamond Blackfan Anemia (DBA) is a rare congenital, bone marrow failure syndrome characterized by normochromic macrocytic anemia, reticulocytopenia and absence or insufficiency of erythroid precursors in normocellular bone marrow, frequently associated with somatic malformations. Here, we present our findings from the study of 17 patients recorded in the Greek DBA registry. PROCEDURE: Clinical evaluation of patients and data collection was performed followed by the molecular analysis of RPS19, RPL5, and RPL11 genes. Mutation screening included PCR amplification, ECMA analysis, and direct sequencing. RESULTS: Congenital anomalies were observed in 71% of the patients. Six patients (35.2%) were found to carry mutations on either the RPS19 gene (three patients,) or the RPL5 gene (three patients). Mutations c.C390G (p.Y130X) and c.197_198insA (p.Y66X) detected in the RPL5 gene were novel. No mutations at the RPL11 gene were identified in Greek patients with DBA. CONCLUSIONS: The clinical course of the patients was similar to previous reports. The occurrence of thyroid carcinoma in an adult patient with DBA is the first to be reported in DBA.


Assuntos
Anemia de Diamond-Blackfan/genética , Mutação/genética , Proteínas Ribossômicas/genética , Adolescente , Adulto , Anemia de Diamond-Blackfan/etnologia , Anemia de Diamond-Blackfan/patologia , Criança , Etnicidade/genética , Feminino , Seguimentos , Testes Genéticos , Grécia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Adulto Jovem
14.
Children (Basel) ; 11(6)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38929284

RESUMO

Shwachman Diamond Syndrome (SDS) is a multi-system disease characterized by exocrine pancreatic insufficiency with malabsorption, infantile neutropenia and aplastic anemia. Life-threatening complications include progression to acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS), critical deep-tissue infections and asphyxiating thoracic dystrophy. In most patients, SDS results from biallelic pathogenic variants in the SBDS gene, different combinations of which contribute to heterogenous clinical presentations. Null variants are not well tolerated, supporting the theory that the loss of SBDS expression is likely lethal in both mice and humans. A novel complex genotype (SBDS:c.[242C>G;258+2T>C];[460-1G>A]/WFS1:c.[2327A>T];[1371G>T]) was detected in a family with recurrent neonatal deaths. A female neonate died three hours after birth with hemolytic anemia, and a male neonate with severe anemia, thrombocytopenia and neutropenia succumbed on day 40 after Staphylococcus epidermidis infection. A subsequent review of the literature focused on fatal complications, complex SBDS genotypes and/or unusual clinical presentations and disclosed rare cases, of which some had unexpected combinations of genetic and clinical findings. The impact of pathogenic variants and associated phenotypes is discussed in the context of data sharing towards expanding scientific expert networks, consolidating knowledge and advancing an understanding of novel underlying genotypes and complex phenotypes, facilitating informed clinical decisions and disease management.

15.
Eur J Hum Genet ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678163

RESUMO

Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.

16.
Children (Basel) ; 10(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38002903

RESUMO

Diamond-Blackfan anemia (DBA) is a ribosomopathy characterized by bone marrow erythroid hypoplasia, which typically presents with severe anemia within the first months of life. DBA is typically attributed to a heterozygous mutation in a ribosomal protein (RP) gene along with a defect in the ribosomal RNA (rRNA) maturation or levels. Besides classic DBA, DBA-like disease has been described with variations in 16 genes (primarily in GATA1, followed by ADA2 alias CECR1, HEATR3, and TSR2). To date, more than a thousand variants have been reported in RP genes. Splice variants represent 6% of identifiable genetic defects in DBA, while their prevalence is 14.3% when focusing on pathogenic and likely pathogenic (P/LP) variants, thus highlighting the impact of such alterations in RP translation and, subsequently, in ribosome levels. We hereby present two cases with novel pathogenic splice variants in RPS17 and RPS26. Associations of DBA-related variants with specific phenotypic features and malignancies and the molecular consequences of pathogenic variations for each DBA-related gene are discussed. The determinants of the spontaneous remission, cancer development, variable expression of the same variants between families, and selectivity of RP defects towards the erythroid lineage remain to be elucidated.

17.
Genes (Basel) ; 14(7)2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37510394

RESUMO

Whole-Exome Sequencing (WES) has proven valuable in the characterization of underlying genetic defects in most rare diseases (RDs). Copy Number Variants (CNVs) were initially thought to escape detection. Recent technological advances enabled CNV calling from WES data with the use of accurate and highly sensitive bioinformatic tools. Amongst 920 patients referred for WES, 454 unresolved cases were further analysed using the ExomeDepth algorithm. CNVs were called, evaluated and categorized according to ACMG/ClinGen recommendations. Causative CNVs were identified in 40 patients, increasing the diagnostic yield of WES from 50.7% (466/920) to 55% (506/920). Twenty-two CNVs were available for validation and were all confirmed; of these, five were novel. Implementation of the ExomeDepth tool promoted effective identification of phenotype-relevant and/or novel CNVs. Among the advantages of calling CNVs from WES data, characterization of complex genotypes comprising both CNVs and SNVs minimizes cost and time to final diagnosis, while allowing differentiation between true or false homozygosity, as well as compound heterozygosity of variants in AR genes. The use of a specific algorithm for calling CNVs from WES data enables ancillary detection of different types of causative genetic variants, making WES a critical first-tier diagnostic test for patients with RDs.


Assuntos
Algoritmos , Doenças Raras , Humanos , Sequenciamento do Exoma , Variações do Número de Cópias de DNA/genética , Análise de Dados
18.
Expert Rev Mol Diagn ; 23(11): 999-1010, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37754746

RESUMO

BACKGROUND: Persistent hyperCKemia results from muscle dysfunction often attributed to genetic alterations of muscle-related genes, such as the dystrophin gene (DMD). Retrospective assessment of findings from DMD analysis, in association with persistent HyperCKemia, was conducted. PATIENTS AND METHODS: Evaluation of medical records from 1354 unrelated cases referred during the period 1996-2021. Assessment of data concerning the detection of DMD gene rearrangements and nucleotide variants. RESULTS: A total of 730 individuals (657 cases, 569 of Greek and 88 of Albanian origins) were identified, allowing an overall estimation of dystrophinopathy incidence at ~1:3800 live male births. The heterogeneous spectrum of 275 distinct DMD alterations comprised exon(s) deletions/duplications, nucleotide variants, and rare events, such as chromosome translocation {t(X;20)}, contiguous gene deletions, and a fused gene involving the DMD and the DOCK8 genes. Ethnic-specific findings include a common founder variant in exon 36 ('Hellenic' variant). CONCLUSIONS: Some 50% of hyperCKemia cases were characterized as dystrophinopathies, highlighting that DMD variants may be considered the most common cause of hyperCKemia in Greece. Delineation of the broad genetic and clinical heterogeneity is fundamental for actionable public health decisions and theragnosis, as well as the establishment of guidelines addressing ethical considerations, especially related to the mild asymptomatic patient subgroup.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Masculino , Distrofina/genética , Grécia/epidemiologia , Fatores de Troca do Nucleotídeo Guanina , Debilidade Muscular , Distrofia Muscular de Duchenne/diagnóstico , Nucleotídeos , Estudos Retrospectivos
19.
Expert Rev Mol Diagn ; 23(1): 85-103, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36714946

RESUMO

OBJECTIVES: Genetics of epilepsy are highly heterogeneous and complex. Lesions detected involve genes encoding various types of channels, transcription factors, and other proteins implicated in numerous cellular processes, such as synaptogenesis. Consequently, a wide spectrum of clinical presentations and overlapping phenotypes hinders differential diagnosis and highlights the need for molecular investigations toward delineation of underlying mechanisms and final diagnosis. Characterization of defects may also contribute valuable data on genetic landscapes and networks implicated in epileptogenesis. METHODS: This study reports on genetic findings from exome sequencing (ES) data of 107 patients with variable types of seizures, with or without additional symptoms, in the context of neurodevelopmental disorders. RESULTS: Multidisciplinary evaluation of ES, including ancillary detection of copy number variants (CNVs) with the ExomeDepth tool, supported a definite diagnosis in 59.8% of the patients, reflecting one of the highest diagnostic yields in epilepsy. CONCLUSION: Emerging advances of next-generation technologies and 'in silico' analysis tools offer the possibility to simultaneously detect several types of variations. Wide assessment of variable findings, specifically those found to be novel and least expected, reflects the ever-evolving genetic landscape of seizure development, potentially beneficial for increased opportunities for trial recruitment and enrollment, and optimized, even personalized, medical management.


Assuntos
Epilepsia , Exoma , Humanos , Exoma/genética , Epilepsia/diagnóstico , Epilepsia/genética , Fenótipo , Variações do Número de Cópias de DNA , Genômica
20.
Birth Defects Res A Clin Mol Teratol ; 94(6): 494-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22511562

RESUMO

BACKGROUND: Pelizaeus-Merzbacher disease (PMD) is a recessive, X-linked leukoencephalopathy attributed to impaired myelination during central nervous system development, caused by defects in the proteolipid protein 1 (PLP1) gene. PMD presents clinical variability, ranging from the severe connatal form to the classic form. CASES: We report the clinical and molecular findings of two affected males, three carrier females, and an aborted male fetus with familial PMD. The two male probands presented with severe PMD phenotype and intellectual disability. High-resolution oligonucleotide-based array comparative genomic hybridization (aCGH) identified an Xq22.2 duplication of 320.6 kb (102641391-102961998, hg18), including the PLP1 gene and surrounding chromosomal region. Postmortem examination of the aborted fetus at 25 weeks' gestation showed focal subcortical white matter degeneration, focal gliosis, and cerebellar atrophy. CONCLUSIONS: Genotype-phenotype correlation is provided. In the connatal form of PMD, leukodystrophy and cerebellar atrophy can occur antenatally and be established at 25 weeks' gestation. The observation of degenerative brain lesions occurring before the onset of subcortical myelination suggests that the PLP1 gene has a more complex role in human brain development, exceeding its structural function in myelin formation.


Assuntos
Encéfalo/metabolismo , Duplicação Cromossômica/genética , Cromossomos Humanos X/genética , Proteína Proteolipídica de Mielina/genética , Doença de Pelizaeus-Merzbacher/genética , Adolescente , Adulto , Encéfalo/patologia , Criança , Feminino , Feto , Genes Recessivos , Estudos de Associação Genética , Genótipo , Humanos , Masculino , Linhagem , Fenótipo , Gravidez
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa