Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Genes Genomics ; 44(5): 571-582, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35254656

RESUMO

BACKGROUND: Calcium ions play a pivotal role in cell proliferation, differentiation, and migration. Under basal conditions, the calcium level is tightly regulated; however, cellular activation by growth factors increase the ion level through calcium pumps in the plasma membrane and endoplasmic reticulum for calcium signaling. Orai1 is a major calcium channel in the cell membrane of non-excitable cells, and its activity depends on the stromal interaction molecule 1 (Stim1). Several groups reported that the store-operated calcium entry (SOCE) can be modulated through phosphorylation of Stim1 by protein kinases such as extracellular signal-regulated kinase (ERK), protein kinase A (PKA), and p21-activated kinase (PAK). PKC is a protein kinase that is activated by calcium and diacylglycerol (DAG), but it remains unclear what role activated PKC plays in controlling the intracellular calcium pool. OBJECTIVES: Here, we investigated whether PKC-ß controls intracellular calcium dynamics through Stim1. METHODS: Several biochemical methods such as immune-precipitation, site directed mutagenesis, in vitro kinase assay were employed to investigate PKC interaction with and phosphorylation of Stim1. Intracellular calcium mobilization, via Stim1 mediated SOCE channel, were studied using in the presence of PKC activator or inhibitor under a confocal microscope. RESULTS: Our data demonstrate that PKC interacts with and phosphorylates Stim1 in vitro. phosphorylation of Stim1 at its C-terminal end appears to be important in the regulation of SOCE activity in HEK293 and HeLa cells. Additionally, transient intracellular calcium mobilization assays demonstrate that the SOCE activity was inhibited by PKC activators or activated by PKC inhibitors. CONCLUSION: In sum, our data suggest a repressive role of PKC in regulating calcium entry through SOCE.


Assuntos
Cálcio , Proteínas de Neoplasias , Cálcio/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo
2.
J Cell Physiol ; 226(1): 194-204, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20658516

RESUMO

Induction of terminal differentiation represents a potentially less toxic cancer therapy. Treatment of HO-1 human metastatic melanoma cells with IFN-ß plus mezerein (MEZ) promotes terminal differentiation with an irreversible loss of growth potential. During this process, the transcription factor FOXM1 is down-regulated potentially inhibiting transactivation of target genes including those involved in G(2)/M progression and cell proliferation. We investigated the mechanism of FOXM1 down-regulation and its physiological role in terminal differentiation. Genetic and pharmacological studies revealed that FOXM1 down-regulation was primarily caused by MEZ activation of PKCα and co-treatment with IFN-ß plus MEZ augmented the effect of PKCα. Promoter analysis with a mutated E-box on the FOXM1 promoter, and in vitro and in vivo binding assays confirm a direct role of c-Myc on FOXM1 expression. Reduction of c-Myc and overexpression of Mad1 by IFN-ß plus MEZ treatment should cause potent and persistent reduction of FOXM1 expression during terminal differentiation. Overexpression of FOXM1 restored expression of cell cycle-associated genes and increased the proportion of cells in the S phase. Our experiments support a model for terminal differentiation in which FOXM1 down-regulation via activation of PKCα followed by suppression of c-Myc expression, are causal events in promoting growth inhibition during terminal differentiation.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Melanoma/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Diterpenos/farmacologia , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Humanos , Interferon beta/farmacologia , Melanoma/patologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais
3.
Mol Cell Biochem ; 351(1-2): 149-56, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21240543

RESUMO

Protein kinases and protein phosphatases constitute about 2-4% of the genes in a typical eukaryotic genome. Protein phosphatases are important players in many cellular processes such as proliferation, differentiation, cell adhesion, and motility. In this study, we identified, classified, and analyzed protein phosphatase complement of the dog genome. In this article, we report the identification of at least 178 putative protein phosphatases in dog which include 51 PSTPs, 112 PTPs, and 15 Asp-based protein phosphatases. Interestingly, we found at least five novel protein phosphatases in dog, namely DUSP5L, DUSP18L, MTMR9L, MTMR12L, and PPP6CL which are not present in human, mouse, rat, and cow. In addition, we found PTP4A1-rt, a retro-transposed copy of the PTP4A1 gene, in chromosome 27. Furthermore, we modeled three-dimensional structures of the catalytic domains of these putative protein phosphatases and aligned them to see the structural similarities between them. We docked PPP2CA with okadaic acid and calculated the value of affinity energy as -8.8 kcal/mol. Our nucleotide substitution rate study revealed that apparently none of the phosphatase family is under significantly higher evolutionary pressure.


Assuntos
Biologia Computacional , Genoma , Fosfoproteínas Fosfatases/genética , Animais , Cães , Modelos Moleculares , Fases de Leitura Aberta , Fosfoproteínas Fosfatases/classificação , Fosfoproteínas Fosfatases/metabolismo , Filogenia , Frações Subcelulares/enzimologia
4.
Arch Biochem Biophys ; 493(2): 242-8, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19914197

RESUMO

Protein kinase C delta (PKCdelta) is one of the important isoforms of PKCs that regulate various cellular processes, including cell survival and apoptosis. Studies have shown that activation of PKCdelta is correlated with apoptosis in various cell types, depending upon various stimuli. Phosphorylation of Thr505, Ser643 and Ser662 is crucial in activation of PKCdelta. Furthermore, phosphorylation of tyrosine residues, in particular that of Tyr311, is associated with PKCdelta activation and induction of apoptosis. Here, we generated a hydrophobic motif phosphorylation-deficient mutant of PKCdelta (PKCdelta-S662A) by mutating Ser662 to Ala, and studied the effect of this mutation in inducing apoptosis in L929 murine fibroblasts. We report that this mutation renders PKCdelta apoptotically more active. Furthermore, we found that the mutant PKCdelta-S662A is tyrosine-phosphorylated and translocated to the membrane faster than its wild-type counterpart.


Assuntos
Apoptose/fisiologia , Membrana Celular/enzimologia , Fibroblastos/enzimologia , Mutação de Sentido Incorreto , Proteína Quinase C-delta/metabolismo , Motivos de Aminoácidos/fisiologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Membrana Celular/genética , Ativação Enzimática/genética , Fibroblastos/citologia , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Fosforilação/genética , Proteína Quinase C-delta/genética , Transporte Proteico/fisiologia
5.
J Neurochem ; 110(4): 1310-20, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19519660

RESUMO

Activation of V1 vasopressin (VP) receptors prevents serum deprivation-induced apoptosis in neuronal H32 cells, partially through mitogen-activated protein kinase (MAPK) mediated Bad phosphorylation. In this study, we investigated the role of protein kinases C (PKC) and B (PKB) mediating VP-induced antiapoptosis in H32 cells. Serum deprivation increased PKCdelta but not PKCalpha or PKCbeta activity, while VP increased PKCalpha and PKCbeta without affecting PKCdelta activity. Inhibition of PKCdelta prevented caspase 3 activation, indicating that PKCdelta mediates the pro-apoptotic actions of serum deprivation. Simultaneous inhibition of PKCalpha and beta and MAPK abolished VP-induced Bad phosphorylation, but it only partially prevented caspase 3 inhibition. Complete abolition of the protective effect of VP on serum deprivation-induced caspase 3 activity required additional blockade of phosphoinositide 3 kinase (PI3K)/protein kinase B. The data demonstrate that VP exerts antiapoptosis through multiple pathways; while PKCalpha and beta together with extracellular signal-regulated kinases/MAPK activation mediates Bad phosphorylation (inactivation), the full protective action of VP requires additional activation of PKB (PI3K/protein kinase B) pathway.


Assuntos
Apoptose/fisiologia , Citoproteção/fisiologia , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Proteína Quinase C-alfa/metabolismo , Vasopressinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Meios de Cultura Livres de Soro/farmacologia , Citoproteção/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proteína Quinase C beta , Proteína Quinase C-alfa/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia , Vasopressinas/farmacologia , Proteína de Morte Celular Associada a bcl/efeitos dos fármacos , Proteína de Morte Celular Associada a bcl/metabolismo
6.
Cancer Res ; 67(13): 6333-41, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17616692

RESUMO

Heat shock protein 27 (HSP27), which is highly expressed in human lung and breast cancer tissues, induced resistance to cell death against various stimuli. Treatment of NCI-H1299 cells, which express a high level of HSP27, with small interference RNA specifically targeting HSP27 resulted in inhibition of their resistance to radiation or cisplatin, suggesting that HSP27 contributed to cellular resistance in these lung cancer cells. Furthermore, because HSP27 interacts directly with the COOH terminus of the protein kinase C delta (PKC delta)-V5 region with ensuing inhibition of PKC delta activity and PKC delta-mediated cell death, we wished to determine amino acid residues in the V5 region that mediate its interaction with HSP27. Investigation with various deletion mutants of the region revealed that amino acid residues 668 to 674 of the V5 region mediate its interaction with HSP27. When NCI-H1299 cells were treated with biotin or with FITC-tagged heptapeptide of the residues 668 to 674 (E-F-Q-F-L-D-I), the cells exhibited dramatically increased cisplatin or radiation-induced cell death with the heptapeptide having efficient interaction with HSP27, which in turn restored the PKC delta activity that had been inhibited by HSP27. In vivo nude mice grafting data also suggested that NCI-H1299 cells were sensitized by this heptapeptide. The above data strongly show that the heptapeptide of the PKC delta-V5 region sensitized human cancer cells through its interaction with HSP27, thereby sequestering HSP27. The heptapeptide may provide a novel strategy for selective neutralization of HSP27.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Oligopeptídeos/farmacologia , Proteína Quinase C-delta/metabolismo , Aminoácidos/química , Animais , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSP27 , Humanos , Camundongos , Chaperonas Moleculares , Peptídeos/química , Plasmídeos/metabolismo , Transfecção
7.
Cancers (Basel) ; 11(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336725

RESUMO

Transmembrane Bax Inhibitor Motif-containing 6 (TMBIM6) is upregulated in several cancer types and involved in the metastasis. Specific downregulation of TMBIM6 results in cancer cell death. However, the TMBIM6 gene transcriptional regulation in normal and cancer cells is least studied. Here, we identified the core promoter region (-133/+30 bp) sufficient for promoter activity of TMBIM6 gene. Reporter gene expression with mutations at transcription factor binding sites, EMSA, supershift, and ChIP assays demonstrated that Sp1 is an essential transcription factor for basal promoter activity of TMBIM6. The TMBIM6 mRNA expression was increased with Sp1 levels in a concentration dependent manner. Ablation of Sp1 through siRNA or inhibition with mithramycin-A reduced the TMBIM6 mRNA expression. We also found that the protein kinase-C activation stimulates promoter activity and endogenous TMBIM6 mRNA by 2- to 2.5-fold. Additionally, overexpression of active mutants of PKCι, PKCε, and PKCδ increased TMBIM6 expression by enhancing nuclear translocation of Sp1. Immunohistochemistry analyses confirmed that the expression levels of PKCι, Sp1, and TMBIM6 were correlated with one another in samples from human breast, prostate, and liver cancer patients. Altogether, this study suggests the involvement of Sp1 in basal transcription and PKC in the enhanced expression of TMBIM6 in cancer.

8.
Cell Signal ; 53: 281-293, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352252

RESUMO

Conjugated linoleic acid (CLA) constitutes a group of isomers derived from linoleic acid. Diverse studies have suggested that these unsaturated fatty acids have beneficial effects on human health. However, it has also been reported that their consumption can generate alterations in hepatic tissue. Thus, in the present study, we evaluated the effect of two of the major isomers of CLA, cis-9, trans-11-CLA and trans-10, cis-12-CLA, in the regulation of insulin signaling in a hepatic cell model, clone 9 (C9). We found that the two isomers decrease insulin-stimulated phosphorylation of the main proteins involved in insulin signaling, such as Akt at Ser473 and Thr308, the insulin receptor at Tyr1158, IRS-1 at Tyr632, and GSK-3 at Ser9/21. Protein expression, however, was unaffected. Interestingly, both isomers of CLA promoted phosphorylation and activation of PKCε. Inhibition of PKCε activity by a dominant-negative form or knockdown of endogenous PKCε prevented the adverse effects of CLA isomers on insulin-induced Akt phosphorylation. Additionally, we also found that both isomers of CLA increase phosphorylation of IRS-1 at Ser612, a mechanism that probably underlies the inhibition of IRS-1 signaling by PKCε. Using confocal microscopy, we found that both isomers of CLA induced lipid accumulation in C9 cells with the presence of spherical cytosolic vesicles, suggesting their identity as neutral lipid droplets. These findings indicate that cis-9, trans-11-CLA and trans-10, cis-12-CLA isomers could have a significant role in the development of insulin resistance in hepatic C9 cells through IRS-1 serine phosphorylation, PKCε activation, and hepatic lipid accumulation.


Assuntos
Resistência à Insulina , Ácidos Linoleicos Conjugados/metabolismo , Fígado/citologia , Proteína Quinase C-épsilon/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Insulina/metabolismo , Isomerismo , Fígado/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
9.
Gene ; 410(1): 147-53, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18201844

RESUMO

Eukaryotic protein kinases, containing a conserved catalytic domain, represent one of the largest superfamilies of the eukaryotic proteins and play distinct roles in cell signaling and diseases. Near completion of rat genome sequencing project enables the evaluation of a near complete set of rat protein kinases. Publicly accessible genetic sequence databases were searched for rat protein kinases, and 515 eukaryotic protein kinases, 40 atypical protein kinases and 45 kinase pseudogenes were identified. The rat has 509 putative protein kinases orthologous to human kinases. Unlike microtubule affinity-regulating kinases, the rat has a few more kinases, in addition to the orthologous pairs of mouse kinases. The comparison of 11 different eukaryotic species revealed the evolutionary conservation of this diverse family of proteins. The evolutionary rate studies of human disease and non-disease associated kinases suggested that relatively uniform selective pressures have been applied to these kinase classes. This bioinformatic study of the rat protein kinases provides a suitable framework for further characterization of the functional and structural properties of these protein kinases.


Assuntos
Biologia Computacional , Genoma , Proteínas Quinases/metabolismo , Animais , Humanos , Fases de Leitura Aberta , Ratos , Especificidade da Espécie
10.
Mol Carcinog ; 47(7): 519-25, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18163459

RESUMO

Although it is often assumed that the antitumor effects of nonsteroidal anti-inflammatory drugs (NSAIDs) are due to inhibition of cyclooxgenase (COX) activity, specifically COX-2, there is accumulating evidence that COX-2 independent mechanisms can also play an important role. Studies with sulindac sulfone (Aptosyn) and related derivatives have revealed a novel pathway of tumor growth inhibition and apoptosis mediated by activation of the guanosine 3',5' monophosphate (cGMP)-dependent enzyme protein kinase G (PKG). The present study indicates that concentrations of the NSAIDs celecoxib, indomethacin, and meclofenamic acid that inhibit growth of SW480 human colon cancer cells inhibit subcellular cGMP-phosphodiesterase (PDE) enzymatic activity and in intact cells induce a two- to threefold increase in intracellular levels of cGMP. This is associated with phosphorylation of the protein VASP, a marker of PKG activation, activation of JNK1 and a decrease in cellular levels of cyclin D1; effects seen with other agents that cause activation of PKG in these cells. On the other hand even a high concentration of the COX-2 specific inhibitor rofecoxib (500 microM) did not inhibit growth of SW480 cells. Nor did rofecoxib inhibit cGMP-PDE activity or cause other changes related to PKG activation in these cells. Since activation of the PKG pathways by celecoxib, indomethacin, and meclofenamic acid in this cell culture system required high concentrations of these compounds, it remains to be determined whether activation of this pathway contributes to the in vivo antitumor effects of specific NSAIDs.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias do Colo/enzimologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Ativação Enzimática/efeitos dos fármacos , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Celecoxib , Moléculas de Adesão Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Ciclina D1/metabolismo , Humanos , Indometacina/farmacologia , Lactonas/farmacologia , Ácido Meclofenâmico/farmacologia , Proteínas dos Microfilamentos/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Sulfonas/farmacologia , Células Tumorais Cultivadas
11.
Mol Cells ; 26(5): 462-7, 2008 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18719353

RESUMO

TPA is known to cooperate with an activated Ras oncogene in the transformation of rodent fibroblasts, but the biochemical mechanisms responsible for this effect have not been established. In the present study we used c-fos promoter-luciferase constructs as reporters, in transient transfection assays, in NIH3T3 cells to assess the mechanism of this cooperation. We found a marked synergistic interaction between TPA and a transfected v-Ha-ras oncogene in the activation of c-fos promoter and SRE. SRE has binding sites for TCF and SRF. A dominant-negative Ras (ras-N17) inhibited the TPA-Ras synergy by blocking the PKC-MAPK-TCF pathway. Dominant-negative RhoA and Rac1 (but not Cdc42Hs) inhibited the TPA-Ras synergy by blocking the Ras-Rho-SRF signaling pathway. Constitutively active PKCalpha and PKCepsilon showed synergy with v-Ras. These results suggest that the activation of two distinct pathways such as Ras-Raf-ERK-TCF pathway and Rho-SRF pathway are responsible for the induction of c-fos by TPA and Ras in mitogenic signaling pathways.


Assuntos
Núcleo Celular/genética , Genes ras , Proteína Oncogênica p21(ras)/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Animais , Células COS , Núcleo Celular/efeitos dos fármacos , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Proteína Oncogênica p21(ras)/genética , Proteína Quinase C/metabolismo , Elemento de Resposta Sérica , Proteínas rho de Ligação ao GTP/metabolismo
12.
Cancer Res ; 66(1): 527-34, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16397269

RESUMO

B-cell chronic lymphocytic leukemia (B-CLL) is characterized by the accumulation of long-lived mature B cells with the distinctive phenotype CD19(hi) CD5+ CD23+ IgM(lo), which are refractory to apoptosis. An increased level of apoptosis has been observed on treatment of human B-CLL cells with protein kinase C (PKC) inhibitors, suggesting that this family of protein kinases mediate survival signals within B-CLL cells. Therefore, to investigate the ability of individual PKC isoforms to transform developing B cells, we stably expressed plasmids encoding PKC mutants in fetal liver-derived hematopoietic progenitor cells (HPC) from wild-type mice and then cultured them in B-cell generation systems in vitro and in vivo. Surprisingly, we noted that expression of a plasmid-encoding dominant-negative PKC alpha (PKC alpha-KR) in HPCs and subsequent culture both in vitro and in vivo resulted in the generation of a population of cells that displayed an enhanced proliferative capacity over untransfected cells and phenotypically resemble human B-CLL cells. In the absence of growth factors and stroma, these B-CLL-like cells undergo cell cycle arrest and, consistent with their ability to escape growth factor withdrawal-induced apoptosis, exhibited elevated levels of Bcl-2 expression. These studies therefore identify a unique oncogenic trigger for the development of a B-CLL-like disease resulting from the subversion of PKC alpha signaling. Our findings uncover novel avenues not only for the study of the induction of leukemic B cells but also for the development of therapeutic drugs to combat PKC alpha-regulated transformation events.


Assuntos
Células-Tronco Hematopoéticas/enzimologia , Leucemia de Células B/enzimologia , Proteína Quinase C-alfa/fisiologia , Animais , Apoptose/fisiologia , Linfócitos B/enzimologia , Linfócitos B/patologia , Transformação Celular Neoplásica , Células-Tronco Hematopoéticas/patologia , Leucemia de Células B/patologia , Camundongos , Camundongos Endogâmicos ICR , Proteína Quinase C-alfa/antagonistas & inibidores , Proteína Quinase C-alfa/biossíntese , Proteína Quinase C-alfa/genética , Transdução de Sinais
13.
Endocrinology ; 148(3): 1099-107, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17185372

RESUMO

GnRH regulates the reproductive system by stimulating synthesis and release of gonadotropins. GnRH acts through a receptor coupled to multiple intracellular events including a rapid phosphoinositide turnover. Although the cAMP pathway is essential for gonadotrope function, the ability of GnRH to induce cAMP, as well as the coupling mechanisms involved, remain controversial. In this study, we established that GnRH increases intracellular cAMP levels in a concentration-dependent manner in LbetaT2 gonadotrope cells (maximal increase, 2.5-fold; EC(50), 0.30 nm), and this was further evidenced by GnRH activation of a cAMP-sensitive reporter gene. The GnRH effect was Ca(2+) independent, mimicked by the phorbol ester phorbol 12-myristate 13-acetate, and blocked by the protein kinase C (PKC) inhibitor bisindolylmaleimide, indicating that the GnRH effect was mediated by PKC. Pharmacological inhibition of conventional PKC isoforms with Gö6976 did not prevent GnRH-induced cAMP production, whereas down-regulation of novel PKCdelta, -epsilon, and -theta by a long-term treatment with GnRH markedly reduced it. Expression of dominant-negative (DN) mutants of PKCdelta or -epsilon but not PKCtheta impaired GnRH activation of a cAMP-sensitive promoter, demonstrating that PKCdelta and -epsilon are the two endogenous isoforms mediating GnRH activation of the adenylyl cyclase (AC) pathway in LbetaT2 cells. Accordingly, we identified by RT-PCR and immunocytochemical analysis, two PKC-sensitive AC isoforms, i.e. AC5 and AC7 as potential targets for GnRH. Lastly, we showed that only sustained stimulation of GnRH receptor significantly increased cAMP, suggesting that in vivo, the cAMP signaling pathway may be selectively recruited under intense GnRH release such as the preovulatory GnRH surge.


Assuntos
AMP Cíclico/metabolismo , Gonadotrofos , Hormônio Liberador de Gonadotropina/fisiologia , Proteína Quinase C-delta/fisiologia , Proteína Quinase C-épsilon/fisiologia , Adenilil Ciclases/metabolismo , Animais , Cálcio/fisiologia , Linhagem Celular , Gonadotrofos/efeitos dos fármacos , Gonadotrofos/metabolismo , Hormônio Liberador de Gonadotropina/agonistas , Isoenzimas/fisiologia , Camundongos , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-épsilon/metabolismo , Receptores LHRH/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Biochem Biophys Res Commun ; 364(2): 231-7, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17942077

RESUMO

Protein kinase C (PKC), a multi-gene family of enzymes, plays key roles in the pathways of signal transduction, growth control and tumorigenesis. Variations in the intracellular localization of the individual isoforms are thought to be an important mechanism for the isoform-specific regulation of enzyme activity and substrate specificity. To provide a dynamic method of analyzing the localization of the specific isoforms of PKC in living cells, we generated fluorescent fusion proteins of the various PKC isoforms by using the green fluorescent protein (GFP) as a fluorescent marker at the carboxyl termini of these enzymes. The intracellular localization of the specific PKC isoforms was then examined by fluorescence microscopy after transient transfection of the respective PKC-GFP expression vector into NIH3T3 cells and subsequent TPA stimulation. We found that the specific isoforms of PKC display distinct localization patterns in untreated NIH3T3 cells. For example, PKCalpha is localized mainly in the cytoplasm while PKCepsilon is localized mainly in the Golgi apparatus. We also observed that PKCalpha, beta1, beta2, gamma, delta, epsilon, and eta translocate to the plasma membrane within 10 min of the start of TPA treatment, while the cellular localizations of PKCzeta and iota were not affected by TPA. Using a protein kinase inhibitor, we also showed that the kinase activity was not important for the translocation of PKC. These results suggest that specific PKC isoforms exert spatially distinct biological effects by virtue of their directed translocation to different intracellular sites.


Assuntos
Proteína Quinase C/fisiologia , Acetato de Tetradecanoilforbol/farmacologia , Animais , Compartimento Celular , Membrana Celular/metabolismo , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Ativação Enzimática , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/fisiologia , Proteínas de Fluorescência Verde/genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/fisiologia , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Estaurosporina/farmacologia
15.
Oncogene ; 24(23): 3715-25, 2005 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-15806174

RESUMO

Since radiation-induced caspase-dependent apoptosis and ROS generation were partially prevented by HSP25 overexpression, similar to the treatment of control cells with antioxidant agents such as DPI and tiron, questions arise whether radiation-mediated ROS generation contributes to the apoptotic cell death, and also whether HSP25 overexpression can reduce ROS mediated apoptotic cell death. In the present study, radiation-induced cytochrome c release from mitochondria and activation of caspases accompanied by a decrease of mitochondrial membrane potential in Jurkat T cells were shown to be inhibited by mitochondrial complex I inhibitor rotenone, suggesting that mitochondrial ROS might be important in radiation-induced caspase-dependent apoptosis. When HSP25 was overexpressed, effects similar to the treatment of cells with the antioxidants were obtained, indicating that HSP25 suppressed radiation-induced mitochondrial alteration that resulted in apoptosis. Furthermore, activation of p38 MAP kinase by radiation was associated with radiation-induced cell death and ROS production and PKCdelta was an upstream molecule for p38 MAP kinase activation, ROS generation and subsequent caspase-dependent apoptotic events. However, in the HSP25 overexpressed cells, the above-described effects were blocked. In fact, radiation-induced membrane translocation of PKCdelta and tyrosine phosphorylation were inhibited by HSP25. Based on the above data, we suggest that HSP25 downregulates PKCdelta, which is a key molecule for radiation-induced ROS generation and mitochondrial-mediated caspase-dependent apoptotic events.


Assuntos
Apoptose/efeitos da radiação , Proteínas de Choque Térmico/fisiologia , Proteínas de Neoplasias/fisiologia , Proteína Quinase C/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ativação Enzimática , Proteínas de Choque Térmico HSP27 , Humanos , Células Jurkat , Mitocôndrias/fisiologia , Chaperonas Moleculares , Fosforilação , Proteína Quinase C-delta , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Cancer Res ; 63(20): 6825-37, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-14583480

RESUMO

Epidemiological and experimental carcinogenesis studies provide evidence that components of garlic (Allium sativum) have anticancer activity. We recently reported that the garlic derivative S-allylmercaptocysteine (SAMC) inhibits growth, arrests cells in G(2)-M, and induces apoptosis in human colon cancer cells (Shirin et al., Cancer Res., 61: 725-731, 2001). Because a fraction of the SAMC-treated cells are specifically arrested in mitosis, we examined the mechanism of this effect in the present study. Immunofluorescent microscopy revealed that the treatment of SW480 cells or NIH3T3 fibroblasts with 150 micro M SAMC (the IC(50) concentration) caused rapid microtubule (MT) depolymerization, MT cytoskeleton disruption, centrosome fragmentation and Golgi dispersion in interphase cells. It also induced the formation of monopolar and multipolar spindles in mitotic cells. In vitro turbidity assays indicated that SAMC acted directly on tubulin to cause MT depolymerization, apparently because it interacts with -SH groups on tubulin. To investigate the signaling pathways involved in SAMC-induced apoptosis, we assayed c-Jun NH(2)-terminal kinase (JNK) activity and found that treatment with SAMC caused a rapid and sustained induction of JNK activity. The selective JNK inhibitor SP600125 inhibited the early phase (24 h) but not the late phase (48 h and later) of apoptosis induced by SAMC. Expression of a dominant-negative mutant of JNK1 in SW480 cells inhibited apoptosis induced by SAMC at 24 h but had no protective effect at 48 h. JNK1(-/-) mouse embryonic fibroblasts were resistant to SAMC-induced apoptosis at 24 h but not at 48 h. On the other hand, the inhibition or abrogation of JNK1 activity did not inhibit the G(2)-M arrest induced by SAMC. SAMC also activated caspase-3. The general caspase inhibitor z-VAD-fmk inhibited both early and late phases of apoptosis induced by SAMC. We conclude that the garlic-derived compound SAMC exerts antiproliferative effects by binding directly to tubulin and disrupting the MT assembly, thus arresting cells in mitosis and triggering JNK1 and caspase-3 signaling pathways that lead to apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Cisteína/análogos & derivados , Cisteína/farmacologia , Microtúbulos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Animais , Apoptose/fisiologia , Sítios de Ligação , Caspase 3 , Caspases/metabolismo , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Centrossomo/efeitos dos fármacos , Centrossomo/fisiologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/fisiologia , Humanos , Camundongos , Microtúbulos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteína Quinase 8 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Mitose/efeitos dos fármacos , Mitose/fisiologia , Células NIH 3T3 , Tubulina (Proteína)/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
17.
Cancer Res ; 64(16): 5787-94, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15313921

RESUMO

Protein kinase C (PKC) family, which functions through serine/threonine kinase activity, is involved in signal transduction pathways necessary for cell proliferation, differentiation, and apoptosis. Its critical role in neoplastic transformation and tumor invasion renders PKC a potential target for anticancer therapy. In this study, we investigated the effect of targeting individual PKCs on gastric carcinogenesis. We established gastric cancer cell lines stably expressing antisense PKCalpha, PKCbeta1, and PKCbeta2 cDNA. These stable transfectants were characterized by cell morphology, cell growth, apoptosis, and tumorigenicity in vitro and in vivo. PKCalpha-AS and PKCbeta1-AS transfectants showed a different morphology with flattened, long processes and decreased nuclear:cytoplasmic ratio compared with the control cells. Cell growth was markedly inhibited in PKCalpha-AS and PKCbeta1-AS transfectants. PKCalpha-AS and PKCbeta1-AS cells were more responsive to mitomycin C- or 5-fluorouracil-induced apoptosis. However, antisense targeting of PKCbeta2 did not have any significant effect on cell morphology, cell growth, or apoptosis. Furthermore, antisense inhibition of PKCalpha and PKCbeta1 markedly suppressed colony-forming efficiency in soft agar and in nude mice xenografts. Inhibition of PKCalpha or PKCbeta1 significantly suppressed transcriptional and DNA binding activity of activator protein in gastric cancer cells, suggesting that PKCalpha or PKCbeta1 exerts their effects on cell growth through regulation of activator protein activity. These data provide evidence that targeting PKCalpha and PKCbeta1 by antisense method is a promising therapy for gastric cancer.


Assuntos
DNA Antissenso/administração & dosagem , Proteína Quinase C/antagonistas & inibidores , Neoplasias Gástricas/terapia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Adesão Celular/genética , Divisão Celular/genética , Linhagem Celular Tumoral , DNA Antissenso/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteína Quinase C/genética , Proteína Quinase C beta , Proteína Quinase C-alfa , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fator de Transcrição AP-1/antagonistas & inibidores , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncogene ; 23(56): 9062-9, 2004 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-15489897

RESUMO

We previously demonstrated that protein kinase C-eta (PKC-eta) mediates a phorbol 12-myristate-13-acetate (PMA)-induced proliferative response in human glioblastoma (GBM) cells. In this report, we show that PMA-stimulated activation of PKC-eta in U-251 GBM cells resulted in activation of both Akt and the mammalian target of rapamycin (mTOR) signaling pathways and an increase in cell proliferation. Expression of a kinase dead PKC-eta (PKC-etaKR) construct reduced the basal and PMA-evoked proliferation of PKC-eta-expressing U-251 GBM cells, as well as abrogated the PMA-induced activation of Akt, mTOR, and the mTOR targets 4E-BP1 and STAT-3. Treatment of cells with the PI-3 kinase inhibitor LY294002 (10 muM) or the mTOR inhibitor rapamycin (10 nM) also reduced PMA-induced proliferation and cell-cycle progression. Expression of a constitutively active PKC-eta (PKC-etaDeltaNPS) construct in a GBM cell line with no endogenous PKC-eta (U-1242) also provided evidence that PKC-eta targets the Akt and mTOR signaling pathways. Moreover, activation of 4E-BP1 and STAT-3 in both PMA-treated U-251 and PKC-etaDeltaNPS-expressing U-1242 GBM cells was inhibited by rapamycin. However, activation of Akt, but not mTOR was inhibited by the PI-3 kinase inhibitor LY294002. This study identifies Akt and mTOR as downstream targets of PKC-eta that are involved in GBM cell proliferation.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Proteína Quinase C/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/metabolismo , Ciclo Celular/efeitos dos fármacos , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Glioblastoma/enzimologia , Glioblastoma/metabolismo , Humanos , Morfolinas/farmacologia , Proteínas Proto-Oncogênicas c-akt , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Acetato de Tetradecanoilforbol/farmacologia
19.
Oncogene ; 21(39): 6113-22, 2002 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12203123

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce the risk of gastrointestinal cancers. Recently, a similar protective effect has been demonstrated by the specific cyclo-oxygenase-2 (COX-2) inhibitors. However, the exact mechanism that accounts for the anti-proliferative effect of specific COX-2 inhibitors is still not fully understood, and it is still controversial whether these protective effects are predominantly mediated through the inhibition of COX-2 activity and prostaglandin synthesis. Identification of molecular targets regulated by COX-2 inhibitors could lead to a better understanding of their pro-apoptotic and anti-neoplastic activities. In the present study, we investigated the effect and the possible molecular target of a COX-2-specific inhibitor SC-236 on gastric cancer. We showed that SC-236 induced apoptosis in gastric cancer cells. However, this effect was not dependent on COX-2 inhibition. SC-236 down-regulated the protein expression and kinase activity of PKC-beta(1), increased the expression of PKCdelta and PKCeta, but did not alter the expression of other PKC isoforms in AGS cells. Moreover, exogenous prostaglandins or PGE(2) receptor antagonists could not reverse the inhibition effect on PKCbeta(1) by SC-236, which suggested that this effect occurred through a mechanism independent of cyclo-oxygenase activity and prostaglandin synthesis. Overexpression of PKCbeta(1) attenuated the apoptotic response of AGS cells to SC-236 and was associated with overexpression of p21(waf1/cip1). Inhibition of PKCbeta(1)-mediated overexpression of p21(waf1/cip1) partially reduced the anti-apoptotic effect of PKCbeta(1). The down-regulation of PKCbeta(1) provides an explanation for COX-independent apoptotic effects of specific COX-2 inhibitor in cultured gastric cancer cells. We also suggest that PKCbeta(1) act as survival mediator in gastric cancer, and its down-regulation by COX-2 inhibitor SC-236 may provide new target for future treatment of gastric cancer.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Pirazóis/farmacologia , Neoplasias Gástricas/enzimologia , Sulfonamidas/farmacologia , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21 , Inibidor de Quinase Dependente de Ciclina p27 , Ciclinas/genética , Ciclinas/metabolismo , DNA Antissenso/farmacologia , Regulação para Baixo , Genes myc/fisiologia , Humanos , Isoenzimas/antagonistas & inibidores , Prostaglandinas/farmacologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C beta , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Prostaglandina E/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Transfecção , Células Tumorais Cultivadas/efeitos dos fármacos , Células Tumorais Cultivadas/enzimologia , Células Tumorais Cultivadas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína X Associada a bcl-2
20.
Biochim Biophys Acta ; 1592(2): 205-11, 2002 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-12379484

RESUMO

Protein kinase Cdelta (PKCdelta) is one of the functionally distinct isoforms in PKC family. p300 is a histone acetyltransferase/transcription coactivator. They share certain properties, such as ubiquitous expression, growth and tumor suppression, and ability to enhance differentiation and apoptosis. In this study, we found that PKCdelta but not classical PKC, specifically phosphorylates p300 at serine 89 in vitro and in vivo. This phosphorylation causes inhibition of p300 intrinsic HAT activity. Subsequently, the targeted acetylation of nucleosomal histones is markedly reduced, which causes repression of p300 transcription coactivator function. These findings identify a new signal transduction pathway by which PKCdelta may inhibit cell growth and promote cellular differentiation.


Assuntos
Acetiltransferases/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Isoenzimas/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Acetiltransferases/química , Acetiltransferases/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Células HeLa , Histona Acetiltransferases , Humanos , Fosforilação , Proteína Quinase C-delta , Serina/química , Transdução de Sinais , Fatores de Transcrição , Transfecção , Fatores de Transcrição de p300-CBP
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa