Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Sci Rep ; 13(1): 14047, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640739

RESUMO

Tumor-infiltrating lymphocytes, specialized immune cells, are considered an important biomarker in cancer analysis. Automated lymphocyte detection is challenging due to its heterogeneous morphology, variable distribution, and presence of artifacts. In this work, we propose a novel Boosted Channels Fusion-based CNN "BCF-Lym-Detector" for lymphocyte detection in multiple cancer histology images. The proposed network initially selects candidate lymphocytic regions at the tissue level and then detects lymphocytes at the cellular level. The proposed "BCF-Lym-Detector" generates diverse boosted channels by utilizing the feature learning capability of different CNN architectures. In this connection, a new adaptive fusion block is developed to combine and select the most relevant lymphocyte-specific features from the generated enriched feature space. Multi-level feature learning is used to retain lymphocytic spatial information and detect lymphocytes with variable appearances. The assessment of the proposed "BCF-Lym-Detector" show substantial improvement in terms of F-score (0.93 and 0.84 on LYSTO and NuClick, respectively), which suggests that the diverse feature extraction and dynamic feature selection enhanced the feature learning capacity of the proposed network. Moreover, the proposed technique's generalization on unseen test sets with a good recall (0.75) and F-score (0.73) shows its potential use for pathologists' assistance.


Assuntos
Linfócitos , Neoplasias , Humanos , Linfócitos do Interstício Tumoral , Neoplasias/diagnóstico , Artefatos , Biologia
2.
Microscopy (Oxf) ; 72(1): 27-42, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36239597

RESUMO

Tumor-infiltrating lymphocytes are specialized lymphocytes that can detect and kill cancerous cells. Their detection poses many challenges due to significant morphological variations, overlapping occurrence, artifact regions and high-class resemblance between clustered areas and artifacts. In this regard, a Lymphocyte Analysis Framework based on Deep Convolutional neural network (DC-Lym-AF) is proposed to analyze lymphocytes in immunohistochemistry images. The proposed framework comprises (i) pre-processing, (ii) screening phase, (iii) localization phase and (iv) post-processing. In the screening phase, a custom convolutional neural network architecture (lymphocyte dilated network) is developed to screen lymphocytic regions by performing a patch-level classification. This proposed architecture uses dilated convolutions and shortcut connections to capture multi-level variations and ensure reference-based learning. In contrast, the localization phase utilizes an attention-guided multi-scale lymphocyte detector to detect lymphocytes. The proposed detector extracts refined and multi-scale features by exploiting dilated convolutions, attention mechanism and feature pyramid network (FPN) using its custom attention-aware backbone. The proposed DC-Lym-AF shows exemplary performance on the NuClick dataset compared with the existing detection models, with an F-score and precision of 0.84 and 0.83, respectively. We verified the generalizability of our proposed framework by participating in a publically open LYON'19 challenge. Results in terms of detection rate (0.76) and F-score (0.73) suggest that the proposed DC-Lym-AF can effectively detect lymphocytes in immunohistochemistry-stained images collected from different laboratories. In addition, its promising generalization on several datasets implies that it can be turned into a medical diagnostic tool to investigate various histopathological problems. Graphical Abstract.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Linfócitos , Processamento de Imagem Assistida por Computador/métodos
3.
Diagnostics (Basel) ; 12(2)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35204358

RESUMO

COVID-19 is a respiratory illness that has affected a large population worldwide and continues to have devastating consequences. It is imperative to detect COVID-19 at the earliest opportunity to limit the span of infection. In this work, we developed a new CNN architecture STM-RENet to interpret the radiographic patterns from X-ray images. The proposed STM-RENet is a block-based CNN that employs the idea of split-transform-merge in a new way. In this regard, we have proposed a new convolutional block STM that implements the region and edge-based operations separately, as well as jointly. The systematic use of region and edge implementations in combination with convolutional operations helps in exploring region homogeneity, intensity inhomogeneity, and boundary-defining features. The learning capacity of STM-RENet is further enhanced by developing a new CB-STM-RENet that exploits channel boosting and learns textural variations to effectively screen the X-ray images of COVID-19 infection. The idea of channel boosting is exploited by generating auxiliary channels from the two additional CNNs using Transfer Learning, which are then concatenated to the original channels of the proposed STM-RENet. A significant performance improvement is shown by the proposed CB-STM-RENet in comparison to the standard CNNs on three datasets, especially on the stringent CoV-NonCoV-15k dataset. The good detection rate (97%), accuracy (96.53%), and reasonable F-score (95%) of the proposed technique suggest that it can be adapted to detect COVID-19 infected patients.

4.
Photodiagnosis Photodyn Ther ; 37: 102676, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34890783

RESUMO

BACKGROUND: Immuno-score, a prognostic measure for cancer, employed in determining tumor grade and type, is generated by counting the number of Tumour-Infiltrating Lymphocytes (TILs) in CD3 and CD8 stained histopathological tissue samples. Significant stain variations and heterogeneity in lymphocytes' spatial distribution and density make automated counting of TILs' a challenging task. METHODS: This work addresses the aforementioned challenges by developing a pipeline "Two-Phase Deep Convolutional Neural Network based Lymphocyte Counter (TDC-LC)" to detect lymphocytes in CD3 and CD8 stained histology images. The proposed pipeline sequentially works by removing hard negative examples (artifacts) in the first phase using a custom CNN "LSATM-Net" that exploits the idea of a split, asymmetric transform, and merge. Whereas, in the second phase, instance segmentation is performed to detect and generate a lymphocyte count against the remaining samples. Furthermore, the effectiveness of the proposed pipeline is measured by comparing it with the state-of-the-art single- and two-stage detectors. The inference code is available at GitHub Repository https://github.com/m-mohsin-zafar/tdc-lc. RESULTS: The empirical evaluation on samples from LYSTO dataset shows that the proposed LSTAM-Net can learn variations in the images and precisely remove the hard negative stain artifacts with an F-score of 0.74. The detection analysis shows that the proposed TDC-LC outperforms the existing models in identifying and counting lymphocytes with high Recall (0.87) and F-score (0.89). Moreover, the commendable performance of the proposed TDC-LC in different organs suggests a good generalization. CONCLUSION: The promising performance of the proposed pipeline suggests that it can serve as an automated system for detecting and counting lymphocytes from patches of tissue samples thereby reducing the burden on pathologists.


Assuntos
Complexo CD3 , Linfócitos T CD8-Positivos , Processamento de Imagem Assistida por Computador , Linfócitos do Interstício Tumoral , Complexo CD3/isolamento & purificação , Linfócitos T CD8-Positivos/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Linfócitos do Interstício Tumoral/patologia , Redes Neurais de Computação , Coloração e Rotulagem
5.
Sci Rep ; 11(1): 6215, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737632

RESUMO

The mitotic activity index is a key prognostic measure in tumour grading. Microscopy based detection of mitotic nuclei is a significant overhead and necessitates automation. This work proposes deep CNN based multi-phase mitosis detection framework "MP-MitDet" for mitotic nuclei identification in breast cancer histopathological images. The workflow constitutes: (1) label-refiner, (2) tissue-level mitotic region selection, (3) blob analysis, and (4) cell-level refinement. We developed an automatic label-refiner to represent weak labels with semi-sematic information for training of deep CNNs. A deep instance-based detection and segmentation model is used to explore probable mitotic regions on tissue patches. More probable regions are screened based on blob area and then analysed at cell-level by developing a custom CNN classifier "MitosRes-CNN" to filter false mitoses. The performance of the proposed "MitosRes-CNN" is compared with the state-of-the-art CNNs that are adapted to cell-level discrimination through cross-domain transfer learning and by adding task-specific layers. The performance of the proposed framework shows good discrimination ability in terms of F-score (0.75), recall (0.76), precision (0.71) and area under the precision-recall curve (0.78) on challenging TUPAC16 dataset. Promising results suggest good generalization of the proposed framework that can learn characteristic features from heterogenous mitotic nuclei.


Assuntos
Neoplasias da Mama/diagnóstico , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Mitose , Redes Neurais de Computação , Automação , Benchmarking , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Núcleo Celular/patologia , Conjuntos de Dados como Assunto , Feminino , Humanos , Índice Mitótico , Gradação de Tumores
6.
Med Image Anal ; 72: 102121, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34139665

RESUMO

Mitotic nuclei estimation in breast tumour samples has a prognostic significance in analysing tumour aggressiveness and grading system. The automated assessment of mitotic nuclei is challenging because of their high similarity with non-mitotic nuclei and heteromorphic appearance. In this work, we have proposed a new Deep Convolutional Neural Network (CNN) based Heterogeneous Ensemble technique "DHE-Mit-Classifier" for analysis of mitotic nuclei in breast histopathology images. The proposed technique in the first step detects candidate mitotic patches from the histopathological biopsy regions, whereas, in the second step, these patches are classified into mitotic and non-mitotic nuclei using the proposed DHE-Mit-Classifier. For the development of a heterogeneous ensemble, five different deep CNNs are designed and used as base-classifiers. These deep CNNs have varying architectural designs to capture the structural, textural, and morphological properties of the mitotic nuclei. The developed base-classifiers exploit different ideas, including (i) region homogeneity and feature invariance, (ii) asymmetric split-transform-merge, (iii) dilated convolution based multi-scale transformation, (iv) spatial and channel attention, and (v) residual learning. Multi-layer-perceptron is used as a meta-classifier to develop a robust and accurate classifier for providing the final decision. The performance of the proposed ensemble "DHE-Mit-Classifier" is evaluated against state-of-the-art CNNs. The performance evaluation on the test set suggests the superiority of the proposed ensemble with an F-score (0.77), recall (0.71), precision (0.83), and area under the precision-recall curve (0.80). The good generalisation of the proposed ensemble with a considerably high F-score and precision suggests its potential use in the development of an assistance tool for pathologists.


Assuntos
Neoplasias da Mama , Algoritmos , Mama , Neoplasias da Mama/diagnóstico por imagem , Núcleo Celular , Feminino , Humanos , Redes Neurais de Computação
7.
Photodiagnosis Photodyn Ther ; 35: 102473, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34348186

RESUMO

BACKGROUND: The recent emergence of a highly infectious and contagious respiratory viral disease known as COVID-19 has vastly impacted human lives and overloaded the health care system. Therefore, it is crucial to develop a fast and accurate diagnostic system for the timely identification of COVID-19 infected patients and thus to help control its spread. METHODS: This work proposes a new deep CNN based technique for COVID-19 classification in X-ray images. In this regard, two novel custom CNN architectures, namely COVID-RENet-1 and COVID-RENet-2, are developed for COVID-19 specific pneumonia analysis. The proposed technique systematically employs Region and Edge-based operations along with convolution operations. The advantage of the proposed idea is validated by performing series of experimentation and comparing results with two baseline CNNs that exploited either a single type of pooling operation or strided convolution down the architecture. Additionally, the discrimination capacity of the proposed technique is assessed by benchmarking it against the state-of-the-art CNNs on radiologist's authenticated chest X-ray dataset. Implementation is available at https://github.com/PRLAB21/Coronavirus-Disease-Analysis-using-Chest-X-Ray-Images. RESULTS: The proposed classification technique shows good generalization as compared to existing CNNs by achieving promising MCC (0.96), F-score (0.98) and Accuracy (98%). This suggests that the idea of synergistically using Region and Edge-based operations aid in better exploiting the region homogeneity, textural variations, and region boundary-related information in an image, which helps to capture the pneumonia specific pattern. CONCLUSIONS: The encouraging results of the proposed classification technique on the test set with high sensitivity (0.98) and precision (0.98) suggest the effectiveness of the proposed technique. Thus, it suggests the potential use of the proposed technique in other X-ray imagery-based infectious disease analysis.


Assuntos
COVID-19 , Aprendizado Profundo , Fotoquimioterapia , Algoritmos , Humanos , Redes Neurais de Computação , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes , Radiografia Torácica , SARS-CoV-2 , Raios X
8.
Comput Biol Med ; 137: 104816, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34482199

RESUMO

The new emerging COVID-19, declared a pandemic disease, has affected millions of human lives and caused a massive burden on healthcare centers. Therefore, a quick, accurate, and low-cost computer-based tool is required to timely detect and treat COVID-19 patients. In this work, two new deep learning frameworks: Deep Hybrid Learning (DHL) and Deep Boosted Hybrid Learning (DBHL), is proposed for effective COVID-19 detection in X-ray dataset. In the proposed DHL framework, the representation learning ability of the two developed COVID-RENet-1 & 2 models is exploited individually through a machine learning (ML) classifier. In COVID-RENet models, Region and Edge-based operations are carefully applied to learn region homogeneity and extract boundaries features. While in the case of the proposed DBHL framework, COVID-RENet-1 & 2 are fine-tuned using transfer learning on the chest X-rays. Furthermore, deep feature spaces are generated from the penultimate layers of the two models and then concatenated to get a single enriched boosted feature space. A conventional ML classifier exploits the enriched feature space to achieve better COVID-19 detection performance. The proposed COVID-19 detection frameworks are evaluated on radiologist's authenticated chest X-ray data, and their performance is compared with the well-established CNNs. It is observed through experiments that the proposed DBHL framework, which merges the two-deep CNN feature spaces, yields good performance (accuracy: 98.53%, sensitivity: 0.99, F-score: 0.98, and precision: 0.98). Furthermore, a web-based interface is developed, which takes only 5-10s to detect COVID-19 in each unseen chest X-ray image. This web-predictor is expected to help early diagnosis, save precious lives, and thus positively impact society.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Raios X
9.
Biomed Opt Express ; 9(5): 2041-2055, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760968

RESUMO

This work presents a diagnostic system for the hepatitis C infection using Raman spectroscopy and proximity based classification. The proposed method exploits transformed Raman spectra using the proximity based machine learning technique and is denoted as RS-PCA-Prox. First, Raman spectral data is baseline corrected by subtracting noise and low intensity background. After this, a feature transformation of Raman spectra is adopted, not only to reduce the feature's dimensionality but also to learn different deviations in Raman shifts. The proposed RS-PCA-Prox shows significant diagnostic power in terms of accuracy, sensitivity, and specificity as 95%, 0.97 and 0.94 in PCA based transformed domain. The comparison of the RS-PCA-Prox with linear and ensemble based classifiers shows that proximity based classification performs better for the discrimination of HCV infected individuals and is able to differentiate the infected individuals from normal ones on the basis of molecular spectral information. Furthermore, it is observed that characteristic spectral changes are due to variation in the intensity of lectin, chitin, lipids, ammonia and viral protein as a consequence of the HCV infection.

10.
Appl Spectrosc ; 71(9): 2111-2117, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28862033

RESUMO

This work presents the evaluation of Raman spectroscopy using random forest (RF) for the analysis of dengue fever in the infected human sera. A total of 100 dengue suspected blood samples, collected from Holy Family Hospital, Rawalpindi, Pakistan, have been used in this study. Out of these samples, 45 were dengue-positive based on immunoglobulin M (IgM) capture enzyme-linked immunosorbent assay (ELISA) tests. For highlighting the spectral differences between normal and infected samples, an effective machine learning system is developed that automatically learns the pattern of the shift in spectrum for the dengue compared to normal cases and thus is able to predict the unknown class based on the known example. In this connection, dimensionality reduction has been performed with the principal component analysis (PCA), while RF is used for automatic classification of dengue samples. For the determination of diagnostic capabilities of Raman spectroscopy based on RF, sensitivity, specificity, and accuracy have been calculated in comparison to normally performed IgM capture ELISA. According to the experiment, accuracy of 91%, sensitivity of 91%, and specificity of 91% were achieved for the proposed RF-based model.


Assuntos
Árvores de Decisões , Dengue/sangue , Dengue/diagnóstico , Análise Espectral Raman/métodos , Adolescente , Adulto , Algoritmos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Paquistão , Análise de Componente Principal , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa