Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 105(18): 187401, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21231136

RESUMO

Femtosecond time-resolved core-level photoemission spectroscopy with a free-electron laser is used to measure the atomic-site specific charge-order dynamics of the charge-density wave in the Mott insulator 1T-TaS2. After strong photoexcitation, a prompt loss of charge order and subsequent fast equilibration dynamics of the electron-lattice system are observed. On the time scale of electron-phonon thermalization, about 1 ps, the system is driven across a phase transition from a long-range charge ordered state to a quasiequilibrium state with domainlike short-range charge and lattice order. The experiment opens the way to study the nonequilibrium dynamics of condensed matter systems with full elemental, chemical, and atomic-site selectivity.

2.
Faraday Discuss ; 171: 243-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415852

RESUMO

Time- and angle-resolved extreme ultraviolet photoemission spectroscopy is used to directly determine the momentum-dependent electronic structure dynamics in the layered Peierls-Mott insulators 1T-TaS(2) and 1T-TaSe(2) on the sub-300 fs time scale. Extracted spectroscopic order parameters display a global two-time-scale dynamics indicating a quasi-instantaneous loss of the electronic orders and a subsequent coherent suppression of the lattice distortion on a time scale related to the frequency of the charge-density-wave amplitude mode. After one half-cycle of coherent amplitude-mode vibration, a crossover state between insulator and metal with partially filled-in and partially closed Mott and Peierls gaps is reached. The results are discussed within the wider context of electronic order quenching in complex materials.

3.
Nat Commun ; 3: 1069, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22990865

RESUMO

Distinguishing insulators by the dominant type of interaction is a central problem in condensed matter physics. Basic models include the Bloch-Wilson and the Peierls insulator due to electron-lattice interactions, the Mott and the excitonic insulator caused by electron-electron interactions, and the Anderson insulator arising from electron-impurity interactions. In real materials, however, all the interactions are simultaneously present so that classification is often not straightforward. Here, we show that time- and angle-resolved photoemission spectroscopy can directly measure the melting times of electronic order parameters and thus identify-via systematic temporal discrimination of elementary electronic and structural processes-the dominant interaction. Specifically, we resolve the debates about the nature of two peculiar charge-density-wave states in the family of transition-metal dichalcogenides, and show that Rb intercalated 1T-TaS(2) is a Peierls insulator and that the ultrafast response of 1T-TiSe(2) is highly suggestive of an excitonic insulator.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa