Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(8): 3245-3250, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37057961

RESUMO

The generation of photon pairs from nanoscale structures with high rates is still a challenge for the integration of quantum devices, as it suffers from parasitic signals from the substrate. In this work, we report type-0 spontaneous parametric down-conversion at 1550 nm from individual bottom-up grown zinc-blende GaAs nanowires with lengths of up to 5 µm and diameters of up to 450 nm. The nanowires were deposited on a transparent ITO substrate, and we measured a background-free coincidence rate of 0.05 Hz in a Hanbury-Brown-Twiss setup. Taking into account transmission losses, the pump fluence, and the nanowire volume, we achieved a biphoton generation of 60 GHz/Wm, which is at least 3 times higher than that of previously reported single nonlinear micro- and nanostructures. We also studied the correlations between the second-harmonic generation and the spontaneous parametric down-conversion intensities with respect to the pump polarization and in different individual nanowires.

2.
Opt Lett ; 47(9): 2161, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486749

RESUMO

This publisher's note contains a correction to Opt. Lett.47, 1673 (2022)10.1364/OL.454450.

3.
Phys Rev Lett ; 129(17): 173602, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36332261

RESUMO

Quantum-correlated biphoton states play an important role in quantum communication and processing, especially considering the recent advances in integrated photonics. However, it remains a challenge to flexibly transport quantum states on a chip, when dealing with large-scale sophisticated photonic designs. The equivalence between certain aspects of quantum optics and solid-state physics makes it possible to utilize a range of powerful approaches in photonics, including topologically protected boundary states, graphene edge states, and dynamic localization. Optical dynamic localization allows efficient protection of classical signals in photonic systems by implementing an analogue of an external alternating electric field. Here, we report on the observation of dynamic localization for quantum-correlated biphotons, including both the generation and the propagation aspects. As a platform, we use sinusoidal waveguide arrays with cubic nonlinearity. We record biphoton coincidence count rates as evidence of robust generation of biphotons and demonstrate the dynamic localization features in both spatial and temporal space by analyzing the quantum correlation of biphotons at the output of the waveguide array. Experimental results demonstrate that various dynamic modulation parameters are effective in protecting quantum states without introducing complex topologies. Our Letter opens new avenues for studying complex physical processes using photonic chips and provides an alternative mechanism of protecting communication channels and nonclassical quantum sources in large-scale integrated quantum optics.

4.
Opt Lett ; 46(3): 564-567, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33528410

RESUMO

Hexagonal boron nitride (hBN) is a layered dielectric material with a wide range of applications in optics and photonics. In this work, we demonstrate a fabrication method for few-layer hBN flakes with areas up to 5000µm2. We show that hBN in this form can be integrated with photonic microstructures: as an example, we use a circular Bragg grating (CBG). The layer quality of the exfoliated hBN flake on and off a CBG is confirmed by Raman spectroscopy and second-harmonic generation (SHG) microscopy. We show that the SHG signal is uniform across the hBN sample outside the CBG and is amplified in the center of the CBG.

5.
Nano Lett ; 20(7): 5309-5314, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32530635

RESUMO

Atomically thin monolayers of transition metal dichalcogenides (TMDs) have emerged as a promising class of novel materials for optoelectronics and nonlinear optics. However, the intrinsic nonlinearity of TMD monolayers is weak, limiting their functionalities for nonlinear optical processes such as frequency conversion. Here we boost the effective nonlinear susceptibility of a TMD monolayer by integrating it with a resonant dielectric metasurface that supports pronounced optical resonances with high quality factors: bound states in the continuum (BICs). We demonstrate that a WS2 monolayer combined with a silicon metasurface hosting BICs exhibits enhanced second-harmonic intensity by more than 3 orders of magnitude relative to a WS2 monolayer on top of a flat silicon film of the same thickness. Our work suggests a pathway to employ high-index dielectric metasurfaces as hybrid structures for enhancement of TMD nonlinearities with applications in nonlinear microscopy, optoelectronics, and signal processing.

6.
Opt Express ; 27(2): 1632-1645, 2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30696226

RESUMO

We report, to the best of our knowledge, the first broadband polarization mode splitter (PMS) based on the adiabatic light passage mechanism in the lithium niobate (LiNbO3) waveguide platform. A broad bandwidth of ~140 nm spanning telecom S, C, and L bands at polarization-extinction ratios (PER) of >20 dB and >18 dB for the TE and TM polarization modes, respectively, is found in a five-waveguide adiabatic coupler scheme whose structure is optimized by an adiabaticity engineering process in titanium-diffused LiNbO3 waveguides. When the five-waveguide PMS is integrated with a three-waveguide "shortcut to adiabaticity" structure, we realize a broadband, high splitting-ratio (ηc) mode splitter for spatial separation of TE- (H-) polarized pump (700-850 nm for ηc>99%), TM- (V-) polarized signal (1510-1630 nm for ηc>97%), and TE- (H-) polarized idler (1480-1650 nm for ηc>97%) modes. Such a unique integrated-optical device is of potential for facilitating the on-chip implementation of a pump-filtered, broadband tunable entangled quantum-state generator.

7.
Opt Lett ; 44(23): 5792-5795, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31774781

RESUMO

In this Letter, we report the second-harmonic generation (SHG) from thick hexagonal boron nitride (hBN) flakes with approximately 109-111 layers. The resulting effective second-order susceptibility is similar to previously reported few-layer experiments. This confirms that thick hBN flakes can serve as a platform for nonlinear optics, which is useful because thick flakes are easy to exfoliate while retaining a large size. We also show spatial second-harmonic maps revealing that SHG remains a useful tool for the characterization of the layer structure, even in the case of a large number of layers.

8.
Opt Lett ; 42(10): 1990-1993, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504731

RESUMO

We describe analytically and numerically the geometric phase arising from nonlinear frequency conversion and show that such a phase can be made non-reciprocal by momentum-dependent photonic transition. Such non-reciprocity is immune to the shortcomings imposed by dynamic reciprocity in Kerr and Kerr-like devices. We propose a simple and practical implementation, requiring only a single waveguide and one pump, while the geometric phase is controllable by the pump and promises robustness against fabrication errors.

9.
Nano Lett ; 16(11): 7191-7197, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27797212

RESUMO

The quest for nanoscale light sources with designer radiation patterns and polarization has motivated the development of nanoantennas that interact strongly with the incoming light and are able to transform its frequency, radiation, and polarization patterns. Here, we demonstrate dielectric AlGaAs nanoantennas for efficient second harmonic generation, enabling the control of both directionality and polarization of nonlinear emission. This is enabled by specialized III-V semiconductor nanofabrication of high-quality AlGaAs nanostructures embedded in optically transparent low-index material, thus allowing for simultaneous forward and backward nonlinear emission. We show that the nanodisk AlGaAs antennas can emit second harmonic in preferential direction with a backward-to-forward ratio of up to five and can also generate complex vector polarization beams, including beams with radial polarization.

10.
Opt Lett ; 41(23): 5604-5607, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27906250

RESUMO

In spontaneous parametric downconversion (SPDC), a pump photon spontaneously splits into signal and idler photons in media with quadratic nonlinearity. This phenomenon is the most widely utilized source of entangled photons with multiple applications in quantum information technology. SPDC on a chip is usually treated as a local process, meaning that signal and idler photons are created in the same position at which the pump photon is destroyed. We reveal that this locality condition can be violated in an array of coupled waveguides. By utilizing higher-order modes of individual waveguides, it is possible to destroy a pump photon in one waveguide and to generate signal and idler photons in other waveguides. This phenomenon of nonlocal photon-pair generation opens new opportunities for the engineering of spatial photon entanglement.

11.
Opt Lett ; 41(17): 4079-82, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27607977

RESUMO

We present an approach to quantum tomography based on first expanding a quantum state across extra degrees of freedom and then exploiting the introduced sparsity to perform reconstruction. We formulate its application to photonic circuits and show that measured spatial photon correlations at the output of a specially tailored discrete-continuous quantum walk can enable full reconstruction of any two-photon spatially entangled and mixed state at the input. This approach does not require any tunable elements, so it is well suited for integration with on-chip superconducting photon detectors.

12.
Opt Lett ; 41(22): 5278-5281, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27842112

RESUMO

We propose and demonstrate a novel type of optical integrated structure consisting of three adiabatically coupled waveguides arranged in an N-shaped geometry. Unlike conventional adiabatic three-waveguide couplers mimicking the stimulated Raman adiabatic passage process which utilize solely the counter-intuitive coupling and, thus, operate only in one direction, our structure achieves complete bidirectional light transfer between two waveguides through the counter-intuitive and intuitive coupling in either direction over a wide wavelength range. Moreover, the light transfer through the intuitive coupling is more efficient and robust than through the counter-intuitive coupling.

13.
Nanotechnology ; 27(6): 065301, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26684215

RESUMO

Nonlinear optical nanoscale waveguides are a compact and powerful platform for efficient wavelength conversion. The free-standing waveguide geometry opens a range of applications in microscopy for local delivery of light, where in situ wavelength conversion helps to overcome various wavelength-dependent issues, such as biological tissue damage. In this paper, we present an original patterning method for high-precision fabrication of free-standing nanoscale waveguides based on lithium niobate, a material with a strong second-order nonlinearity and a broad transparency window covering the visible and mid-infrared wavelength ranges. The fabrication process combines electron-beam lithography with ion-beam enhanced etching and produces nanowaveguides with lengths from 5 to 50 µm, widths from 50 to 1000 nm and heights from 50 to 500 nm, each with a precision of few nanometers. The fabricated nanowaveguides are tested in an optical characterization experiment showing efficient second-harmonic generation.

14.
Opt Lett ; 40(17): 4078-81, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26368716

RESUMO

We predict analytically and confirm with numerical simulations that intermode dispersion in nanowire waveguide arrays can be tailored through periodic waveguide bending, facilitating flexible spatiotemporal reshaping without breakup of femtosecond pulses. This approach allows simultaneous and independent control of temporal dispersion and spatial diffraction that are often strongly connected in nanophotonic structures.

15.
Opt Lett ; 40(20): 4575-8, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469567

RESUMO

We describe the process of parametric amplification in a directional coupler of quadratically nonlinear and lossy waveguides, which belongs to a class of optical systems with spatial parity-time (PT) symmetry in the linear regime. We identify a distinct spectral PT anti-symmetry associated with optical parametric interaction, and show that pump-controlled symmetry breaking can facilitate spectrally selective mode amplification in analogy with PT lasers. We also establish a connection between the breaking of spectral and spatial mode symmetries, revealing the potential to implement unconventional regimes of spatial light switching through ultrafast control of PT breaking by pump pulses.

16.
Opt Lett ; 39(4): 953-6, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562250

RESUMO

We propose a novel integrated scheme for generation of Bell states, which allows simultaneous spatial filtering of pump photons. It is achieved through spontaneous parametric down-conversion in the system of nonlinear adiabatically coupled waveguides. We perform detailed analytic study of photon-pair generation in coupled waveguides and reveal the optimal conditions for the generation of each particular Bell state. Furthermore, we simulate the performance of the device under realistic assumptions and show that adiabatic coupling allows us to spatially filter the pump from modal-entangled photon pairs. Finally, we demonstrate that adiabatic couplers open the possibility of maintaining the purity of generated Bell states in a relatively fabrication-fault-tolerant way.

17.
Opt Lett ; 39(3): 462-5, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24487840

RESUMO

We derive general coupled-mode equations describing the nonlinear interaction of electromagnetic modes in periodic media with loss and gain. Our approach is rigorously based on the Lorentz reciprocity theorem, and it can be applied to a broad range of metal-dielectric photonic structures, including plasmonic waveguides and metamaterials. We verify that our general results agree with the previous analysis of particular cases, and predict novel effects on self- and cross-phase modulation in multilayer nonlinear fishnet metamaterials.

18.
ACS Appl Mater Interfaces ; 16(15): 19340-19349, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38570338

RESUMO

Solid-state quantum emitters are vital building blocks for quantum information science and quantum technology. Among various types of solid-state emitters discovered to date, color centers in hexagonal boron nitride have garnered tremendous traction in recent years, thanks to their environmental robustness, high brightness, and room-temperature operation. Most recently, these quantum emitters have been employed for satellite-based quantum key distribution. One of the most important requirements to qualify these emitters for space-based applications is their optical stability against cryogenic thermal shock. Such an understanding has, however, remained elusive to date. Here, we report on the effects caused by such thermal shock that induces random, irreversible changes in the spectral characteristics of the quantum emitters. By employing a combination of structural characterizations and density functional calculations, we attribute the observed changes to lattice strain caused by cryogenic temperature shock. Our study sheds light on the stability of the quantum emitters under extreme conditions─similar to those countered in outer space.

19.
Opt Express ; 21(16): 19012-21, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23938816

RESUMO

We study the nonlinear optical properties of lithium niobate (LiNbO(3)) nanowires (NWs) fabricated by a top-down ion beam enhanced etching method. First, we demonstrate generation and propagation of the second-harmonic (SH) light in LiNbO(3) NWs of typical rectangular cross-sections of 400 x 600 nm(2) and length from 10 to 50 µm. Then, we show local fluorescent excitation of 4',6-diamidino-2-phenylindole (DAPI) dye with the propagated SH signal in standard concentrations as for biological applications. By measuring the detected average power of the propagated fundamental harmonic (FH) and the SH signal at the output of the NWs, we directly prove the dominating role of the SH signal over possible two-photon excitation processes with the FH in the DAPI dye. We estimate that 63 ± 6 pW of the propagated SH average power is required for detectable dye excitation. Finally, we model the waveguiding of the SH light to determine the smallest NW cross-section (around 40x60 nm(2)) which is potentially able to excite fluorescence with a FH intensity below the cell damage threshold.

20.
Opt Express ; 20(24): 27441-6, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23187602

RESUMO

We study photon-pair generation in arrays of cubic nonlinear waveguides through spontaneous four-wave mixing. We analyze numerically the quantum statistics of photon pairs at the array output as a function of waveguide dispersion and pump beam power. We show flexible spatial quantum state control such as pump-power-controlled transition between bunching and anti-bunching correlations due to nonlinear self-focusing.


Assuntos
Simulação por Computador , Fótons , Refratometria/instrumentação , Espalhamento de Radiação , Desenho Assistido por Computador , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa