Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Nature ; 615(7951): 259-264, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890371

RESUMO

Remarkable perturbations in the stratospheric abundances of chlorine species and ozone were observed over Southern Hemisphere mid-latitudes following the 2020 Australian wildfires1,2. These changes in atmospheric chemical composition suggest that wildfire aerosols affect stratospheric chlorine and ozone depletion chemistry. Here we propose that wildfire aerosol containing a mixture of oxidized organics and sulfate3-7 increases hydrochloric acid solubility8-11 and associated heterogeneous reaction rates, activating reactive chlorine species and enhancing ozone loss rates at relatively warm stratospheric temperatures. We test our hypothesis by comparing atmospheric observations to model simulations that include the proposed mechanism. Modelled changes in 2020 hydrochloric acid, chlorine nitrate and hypochlorous acid abundances are in good agreement with observations1,2. Our results indicate that wildfire aerosol chemistry, although not accounting for the record duration of the 2020 Antarctic ozone hole, does yield an increase in its area and a 3-5% depletion of southern mid-latitude total column ozone. These findings increase concern2,12,13 that more frequent and intense wildfires could delay ozone recovery in a warming world.


Assuntos
Aerossóis , Cloro , Perda de Ozônio , Ozônio , Incêndios Florestais , Aerossóis/efeitos adversos , Aerossóis/análise , Aerossóis/química , Austrália , Cloro/análise , Cloro/química , Ácido Clorídrico/química , Ozônio/análise , Ozônio/química , Aquecimento Global
2.
Proc Natl Acad Sci U S A ; 121(12): e2318716121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483991

RESUMO

Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very-short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted.

3.
Proc Natl Acad Sci U S A ; 120(11): e2213910120, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877843

RESUMO

The 2019 to 2020 Australian summer wildfires injected an amount of organic gases and particles into the stratosphere unprecedented in the satellite record since 2002, causing large unexpected changes in HCl and ClONO2. These fires provided a novel opportunity to evaluate heterogeneous reactions on organic aerosols in the context of stratospheric chlorine and ozone depletion chemistry. It has long been known that heterogeneous chlorine (Cl) activation occurs on the polar stratospheric clouds (PSCs; liquid and solid particles containing water, sulfuric acid, and in some cases nitric acid) that are found in the stratosphere, but these are only effective for ozone depletion chemistry at temperatures below about 195 K (i.e., largely in the polar regions during winter). Here, we develop an approach to quantitatively assess atmospheric evidence for these reactions using satellite data for both the polar (65 to 90°S) and the midlatitude (40 to 55°S) regions. We show that heterogeneous reactions apparently even happened at temperatures at 220 K during austral autumn on the organic aerosols present in 2020 in both regions, in contrast to earlier years. Further, increased variability in HCl was also found after the wildfires, suggesting diverse chemical properties among the 2020 aerosols. We also confirm the expectation based upon laboratory studies that heterogeneous Cl activation has a strong dependence upon water vapor partial pressure and hence atmospheric altitude, becoming much faster close to the tropopause. Our analysis improves the understanding of heterogeneous reactions that are important for stratospheric ozone chemistry under both background and wildfire conditions.

4.
Proc Natl Acad Sci U S A ; 120(20): e2300758120, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155871

RESUMO

In 1967, scientists used a simple climate model to predict that human-caused increases in atmospheric CO2 should warm Earth's troposphere and cool the stratosphere. This important signature of anthropogenic climate change has been documented in weather balloon and satellite temperature measurements extending from near-surface to the lower stratosphere. Stratospheric cooling has also been confirmed in the mid to upper stratosphere, a layer extending from roughly 25 to 50 km above the Earth's surface (S25 - 50). To date, however, S25 - 50 temperatures have not been used in pattern-based attribution studies of anthropogenic climate change. Here, we perform such a "fingerprint" study with satellite-derived patterns of temperature change that extend from the lower troposphere to the upper stratosphere. Including S25 - 50 information increases signal-to-noise ratios by a factor of five, markedly enhancing fingerprint detectability. Key features of this global-scale human fingerprint include stratospheric cooling and tropospheric warming at all latitudes, with stratospheric cooling amplifying with height. In contrast, the dominant modes of internal variability in S25 - 50 have smaller-scale temperature changes and lack uniform sign. These pronounced spatial differences between S25 - 50 signal and noise patterns are accompanied by large cooling of S25 - 50 (1 to 2[Formula: see text]C over 1986 to 2022) and low S25 - 50 noise levels. Our results explain why extending "vertical fingerprinting" to the mid to upper stratosphere yields incontrovertible evidence of human effects on the thermal structure of Earth's atmosphere.

5.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131938

RESUMO

The catalytic depletion of Antarctic stratospheric ozone is linked to anthropogenic emissions of chlorine and bromine. Despite its larger ozone-depleting efficiency, the contribution of ocean-emitted iodine to ozone hole chemistry has not been evaluated, due to the negligible iodine levels previously reported to reach the stratosphere. Based on the recently observed range (0.77 ± 0.1 parts per trillion by volume [pptv]) of stratospheric iodine injection, we use the Whole Atmosphere Community Climate Model to assess the role of iodine in the formation and recent past evolution of the Antarctic ozone hole. Our 1980-2015 simulations indicate that iodine can significantly impact the lower part of the Antarctic ozone hole, contributing, on average, 10% of the lower stratospheric ozone loss during spring (up to 4.2% of the total stratospheric column). We find that the inclusion of iodine advances the beginning and delays the closure stages of the ozone hole by 3 d to 5 d, increasing its area and mass deficit by 11% and 20%, respectively. Despite being present in much smaller amounts, and due to faster gas-phase photochemical reactivation, iodine can dominate (∼73%) the halogen-mediated lower stratospheric ozone loss during summer and early fall, when the heterogeneous reactivation of inorganic chlorine and bromine reservoirs is reduced. The stratospheric ozone destruction caused by 0.77 pptv of iodine over Antarctica is equivalent to that of 3.1 (4.6) pptv of biogenic very short-lived bromocarbons during spring (rest of sunlit period). The relative contribution of iodine to future stratospheric ozone loss is likely to increase as anthropogenic chlorine and bromine emissions decline following the Montreal Protocol.


Assuntos
Atmosfera/análise , Iodo/química , Perda de Ozônio , Ozônio Estratosférico/química , Poluentes Atmosféricos/química , Regiões Antárticas , Estações do Ano
6.
Proc Natl Acad Sci U S A ; 119(10): e2117325119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238658

RESUMO

SignificanceLarge wildfires have been observed to inject smoke into the stratosphere, raising questions about their potential to affect the stratospheric ozone layer that protects life on Earth from biologically damaging ultraviolet radiation. Multiple observations of aerosol and NO2 concentrations from three independent satellite instruments are used here together with model calculations to identify decreases in stratospheric NO2 concentrations following major Australian 2019 through 2020 wildfires. The data confirm that important chemistry did occur on the smoke particle surfaces. The observed behavior in NO2 with increasing particle concentrations is a marker for surface chemistry that contributes to midlatitude ozone depletion. The results indicate that increasing wildfire activity in a warming world may slow the recovery of the ozone layer.


Assuntos
Altitude , Material Particulado/química , Fumaça/análise , Ozônio Estratosférico/química , Incêndios Florestais , Austrália
7.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33723065

RESUMO

The ocean is a reservoir for CFC-11, a major ozone-depleting chemical. Anthropogenic production of CFC-11 dramatically decreased in the 1990s under the Montreal Protocol, which stipulated a global phase out of production by 2010. However, studies raise questions about current overall emission levels and indicate unexpected increases of CFC-11 emissions of about 10 Gg ⋅ yr-1 after 2013 (based upon measured atmospheric concentrations and an assumed atmospheric lifetime). These findings heighten the need to understand processes that could affect the CFC-11 lifetime, including ocean fluxes. We evaluate how ocean uptake and release through 2300 affects CFC-11 lifetimes, emission estimates, and the long-term return of CFC-11 from the ocean reservoir. We show that ocean uptake yields a shorter total lifetime and larger inferred emission of atmospheric CFC-11 from 1930 to 2075 compared to estimates using only atmospheric processes. Ocean flux changes over time result in small but not completely negligible effects on the calculated unexpected emissions change (decreasing it by 0.4 ± 0.3 Gg ⋅ yr-1). Moreover, it is expected that the ocean will eventually become a source of CFC-11, increasing its total lifetime thereafter. Ocean outgassing should produce detectable increases in global atmospheric CFC-11 abundances by the mid-2100s, with emission of around 0.5 Gg ⋅ yr-1; this should not be confused with illicit production at that time. An illustrative model projection suggests that climate change is expected to make the ocean a weaker reservoir for CFC-11, advancing the detectable change in the global atmospheric mixing ratio by about 5 yr.


Assuntos
Atmosfera , Clorofluorcarbonetos/efeitos adversos , Poluentes Ambientais/efeitos adversos , Oceanos e Mares , Ozônio , Mudança Climática , Monitoramento Ambiental , Modelos Teóricos
8.
BMC Public Health ; 23(1): 1830, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730605

RESUMO

BACKGROUND: The World Health Organisation declared the novel Coronavirus disease (COVID-19) a global pandemic on 11th March 2020. Since then, the world has been firmly in its grip. At the time of writing, there were more than 767,972,961 million confirmed cases and over 6,950,655 million deaths. While the main policy focus has been on controlling the virus and ensuring vaccine roll-out and uptake, the population mental health impacts of the pandemic are expected to be long-term, with certain population groups affected more than others. METHODS: The overall objectives of our 'Coronavirus: Mental Health and the Pandemic' study were to explore UK adults' experiences of the Coronavirus pandemic and to gain insights into the mental health impacts, population-level changes over time, current and future mental health needs, and how these can best be addressed. The wider mixed-methods study consisted of repeated cross-sectional surveys and embedded qualitative sub-studies including in-depth interviews and focus group discussions with the wider UK adult population. For this particular inequalities and mental health sub-study, we used mixed methods data from our cross-sectional surveys and we carried out three Focus Group Discussions with a maximum variation sample from across the UK adult population. The discussions covered the broader topic of 'Inequalities and mental health during the Coronavirus pandemic in the UK' and took place online between April and August 2020. Focus Groups transcripts were analysed using thematic analysis in NVIVO. Cross-sectional survey data were analysed using STATA for descriptive statistics. RESULTS: Three broad main themes emerged, each supporting a number of sub-themes: (1) Impacts of the pandemic; (2) Moving forward: needs and recommendations; (3) Coping mechanisms and resilience. Findings showed that participants described their experiences of the pandemic in relation to its impact on themselves and on different groups of people. Their experiences illustrated how the pandemic and subsequent measures had exacerbated existing inequalities and created new ones, and triggered various emotional responses. Participants also described their coping strategies and what worked and did not work for them, as well as support needs and recommendations for moving forward through, and out of, the pandemic; all of which are valuable learnings to be considered in policy making for improving mental health and for ensuring future preparedness. CONCLUSIONS: The pandemic is taking a long-term toll on the nations' mental health which will continue to have impacts for years to come. It is therefore crucial to learn the vital lessons learned from this pandemic. Specific as well as whole-government policies need to respond to this, address inequalities and the different needs across the life-course and across society, and take a holistic approach to mental health improvement across the UK.


Assuntos
COVID-19 , Saúde Mental , Adulto , Humanos , Estudos Transversais , Pandemias , COVID-19/epidemiologia , Reino Unido/epidemiologia
9.
Proc Natl Acad Sci U S A ; 116(40): 19821-19827, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527233

RESUMO

Large initial condition ensembles of a climate model simulation provide many different realizations of internal variability noise superimposed on an externally forced signal. They have been used to estimate signal emergence time at individual grid points, but are rarely employed to identify global fingerprints of human influence. Here we analyze 50- and 40-member ensembles performed with 2 climate models; each was run with combined human and natural forcings. We apply a pattern-based method to determine signal detection time [Formula: see text] in individual ensemble members. Distributions of [Formula: see text] are characterized by the median [Formula: see text] and range [Formula: see text], computed for tropospheric and stratospheric temperatures over 1979 to 2018. Lower stratospheric cooling-primarily caused by ozone depletion-yields [Formula: see text] values between 1994 and 1996, depending on model ensemble, domain (global or hemispheric), and type of noise data. For greenhouse-gas-driven tropospheric warming, larger noise and slower recovery from the 1991 Pinatubo eruption lead to later signal detection (between 1997 and 2003). The stochastic uncertainty [Formula: see text] is greater for tropospheric warming (8 to 15 y) than for stratospheric cooling (1 to 3 y). In the ensemble generated by a high climate sensitivity model with low anthropogenic aerosol forcing, simulated tropospheric warming is larger than observed; detection times for tropospheric warming signals in satellite data are within [Formula: see text] ranges in 60% of all cases. The corresponding number is 88% for the second ensemble, which was produced by a model with even higher climate sensitivity but with large aerosol-induced cooling. Whether the latter result is physically plausible will require concerted efforts to reduce significant uncertainties in aerosol forcing.


Assuntos
Aerossóis , Mudança Climática , Clima , Efeito Estufa , Atmosfera , Conservação dos Recursos Naturais , Geografia , Humanos , Análise dos Mínimos Quadrados , Ozônio , Reprodutibilidade dos Testes , Processamento de Sinais Assistido por Computador , Processos Estocásticos , Temperatura , Fatores de Tempo , Incerteza
11.
Nature ; 510(7506): 533-6, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24776804

RESUMO

The transfer of somatic cell nuclei into oocytes can give rise to pluripotent stem cells that are consistently equivalent to embryonic stem cells, holding promise for autologous cell replacement therapy. Although methods to induce pluripotent stem cells from somatic cells by transcription factors are widely used in basic research, numerous differences between induced pluripotent stem cells and embryonic stem cells have been reported, potentially affecting their clinical use. Because of the therapeutic potential of diploid embryonic stem-cell lines derived from adult cells of diseased human subjects, we have systematically investigated the parameters affecting efficiency of blastocyst development and stem-cell derivation. Here we show that improvements to the oocyte activation protocol, including the use of both kinase and translation inhibitors, and cell culture in the presence of histone deacetylase inhibitors, promote development to the blastocyst stage. Developmental efficiency varied between oocyte donors, and was inversely related to the number of days of hormonal stimulation required for oocyte maturation, whereas the daily dose of gonadotropin or the total number of metaphase II oocytes retrieved did not affect developmental outcome. Because the use of concentrated Sendai virus for cell fusion induced an increase in intracellular calcium concentration, causing premature oocyte activation, we used diluted Sendai virus in calcium-free medium. Using this modified nuclear transfer protocol, we derived diploid pluripotent stem-cell lines from somatic cells of a newborn and, for the first time, an adult, a female with type 1 diabetes.


Assuntos
Núcleo Celular/genética , Reprogramação Celular , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patologia , Diploide , Oócitos/citologia , Células-Tronco Pluripotentes/citologia , Adulto , Blastocisto/efeitos dos fármacos , Fusão Celular , Cromossomos de Mamíferos/metabolismo , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Recém-Nascido , Metáfase , Oócitos/metabolismo , Oogênese , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Vírus Sendai , Fuso Acromático/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(4): 657-662, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069937

RESUMO

Mitigation of anthropogenic greenhouse gases with short lifetimes (order of a year to decades) can contribute to limiting warming, but less attention has been paid to their impacts on longer-term sea-level rise. We show that short-lived greenhouse gases contribute to sea-level rise through thermal expansion (TSLR) over much longer time scales than their atmospheric lifetimes. For example, at least half of the TSLR due to increases in methane is expected to remain present for more than 200 y, even if anthropogenic emissions cease altogether, despite the 10-y atmospheric lifetime of this gas. Chlorofluorocarbons and hydrochlorofluorocarbons have already been phased out under the Montreal Protocol due to concerns about ozone depletion and provide an illustration of how emission reductions avoid multiple centuries of future TSLR. We examine the "world avoided" by the Montreal Protocol by showing that if these gases had instead been eliminated in 2050, additional TSLR of up to about 14 cm would be expected in the 21st century, with continuing contributions lasting more than 500 y. Emissions of the hydrofluorocarbon substitutes in the next half-century would also contribute to centuries of future TSLR. Consideration of the time scales of reversibility of TSLR due to short-lived substances provides insights into physical processes: sea-level rise is often assumed to follow air temperature, but this assumption holds only for TSLR when temperatures are increasing. We present a more complete formulation that is accurate even when atmospheric temperatures are stable or decreasing due to reductions in short-lived gases or net radiative forcing.

13.
Geophys Res Lett ; 46(10): 5445-5451, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31423035

RESUMO

Under an emission scenario where atmospheric greenhouse gas concentrations are stabilized, previous work suggests that on centennial time scales the rate of global temperature increases would steady at significantly lower rates than those of the 21st century. As climate change is not globally uniform, regional differences in achieving this steady rate of warming can be expected. Here, we define a "Time of Steady Change" (TSC) as the time of reaching this steady rate of warming, and we present a method for estimating TSC with the use of General Circulation Model experiments run under greenhouse gas stabilization scenarios. We find that TSC occurs latest in low latitudes and in the Arctic, despite these areas steadying at very different absolute warming rates. These broad patterns are robust across multiple General Circulation Model ensembles and alternative definitions of TSC. These results indicate large regional differences in the trajectory of climate change in coming centuries.

14.
Nat Methods ; 12(9): 885-92, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26237226

RESUMO

Induced pluripotent stem cells (iPSCs) are an essential tool for modeling how causal genetic variants impact cellular function in disease, as well as an emerging source of tissue for regenerative medicine. The preparation of somatic cells, their reprogramming and the subsequent verification of iPSC pluripotency are laborious, manual processes limiting the scale and reproducibility of this technology. Here we describe a modular, robotic platform for iPSC reprogramming enabling automated, high-throughput conversion of skin biopsies into iPSCs and differentiated cells with minimal manual intervention. We demonstrate that automated reprogramming and the pooled selection of polyclonal pluripotent cells results in high-quality, stable iPSCs. These lines display less line-to-line variation than either manually produced lines or lines produced through automation followed by single-colony subcloning. The robotic platform we describe will enable the application of iPSCs to population-scale biomedical problems including the study of complex genetic diseases and the development of personalized medicines.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Separação Celular/instrumentação , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Técnicas Analíticas Microfluídicas/instrumentação , Robótica/instrumentação , Diferenciação Celular/fisiologia , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos
15.
Proc Natl Acad Sci U S A ; 111(17): 6220-5, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24733920

RESUMO

Antarctic ozone depletion is associated with enhanced chlorine from anthropogenic chlorofluorocarbons and heterogeneous chemistry under cold conditions. The deep Antarctic "hole" contrasts with the generally weaker depletions observed in the warmer Arctic. An unusually cold Arctic stratospheric season occurred in 2011, raising the question of how the Arctic ozone chemistry in that year compares with others. We show that the averaged depletions near 20 km across the cold part of each pole are deeper in Antarctica than in the Arctic for all years, although 2011 Arctic values do rival those seen in less-depleted years in Antarctica. We focus not only on averages but also on extremes, to address whether or not Arctic ozone depletion can be as extreme as that observed in the Antarctic. This information provides unique insights into the contrasts between Arctic and Antarctic ozone chemistry. We show that extreme Antarctic ozone minima fall to or below 0.1 parts per million by volume (ppmv) at 18 and 20 km (about 70 and 50 mbar) whereas the lowest Arctic ozone values are about 0.5 ppmv at these altitudes. At a higher altitude of 24 km (30-mbar level), no Arctic data below about 2 ppmv have been observed, including in 2011, in contrast to values more than an order of magnitude lower in Antarctica. The data show that the lowest ozone values are associated with temperatures below -80 °C to -85 °C depending upon altitude, and are closely associated with reduced gaseous nitric acid concentrations due to uptake and/or sedimentation in polar stratospheric cloud particles.


Assuntos
Perda de Ozônio , Regiões Antárticas , Regiões Árticas , Atmosfera , Comunicações Via Satélite , Estações do Ano , Ozônio Estratosférico/análise , Temperatura
16.
Proc Natl Acad Sci U S A ; 110(43): 17235-40, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-24043789

RESUMO

Since the late 1970s, satellite-based instruments have monitored global changes in atmospheric temperature. These measurements reveal multidecadal tropospheric warming and stratospheric cooling, punctuated by short-term volcanic signals of reverse sign. Similar long- and short-term temperature signals occur in model simulations driven by human-caused changes in atmospheric composition and natural variations in volcanic aerosols. Most previous comparisons of modeled and observed atmospheric temperature changes have used results from individual models and individual observational records. In contrast, we rely on a large multimodel archive and multiple observational datasets. We show that a human-caused latitude/altitude pattern of atmospheric temperature change can be identified with high statistical confidence in satellite data. Results are robust to current uncertainties in models and observations. Virtually all previous research in this area has attempted to discriminate an anthropogenic signal from internal variability. Here, we present evidence that a human-caused signal can also be identified relative to the larger "total" natural variability arising from sources internal to the climate system, solar irradiance changes, and volcanic forcing. Consistent signal identification occurs because both internal and total natural variability (as simulated by state-of-the-art models) cannot produce sustained global-scale tropospheric warming and stratospheric cooling. Our results provide clear evidence for a discernible human influence on the thermal structure of the atmosphere.


Assuntos
Atmosfera/química , Clima , Aquecimento Global , Temperatura , Simulação por Computador , Ecossistema , Humanos , Modelos Teóricos , Luz Solar , Erupções Vulcânicas
17.
Proc Natl Acad Sci U S A ; 110(1): 26-33, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23197824

RESUMO

We perform a multimodel detection and attribution study with climate model simulation output and satellite-based measurements of tropospheric and stratospheric temperature change. We use simulation output from 20 climate models participating in phase 5 of the Coupled Model Intercomparison Project. This multimodel archive provides estimates of the signal pattern in response to combined anthropogenic and natural external forcing (the fingerprint) and the noise of internally generated variability. Using these estimates, we calculate signal-to-noise (S/N) ratios to quantify the strength of the fingerprint in the observations relative to fingerprint strength in natural climate noise. For changes in lower stratospheric temperature between 1979 and 2011, S/N ratios vary from 26 to 36, depending on the choice of observational dataset. In the lower troposphere, the fingerprint strength in observations is smaller, but S/N ratios are still significant at the 1% level or better, and range from three to eight. We find no evidence that these ratios are spuriously inflated by model variability errors. After removing all global mean signals, model fingerprints remain identifiable in 70% of the tests involving tropospheric temperature changes. Despite such agreement in the large-scale features of model and observed geographical patterns of atmospheric temperature change, most models do not replicate the size of the observed changes. On average, the models analyzed underestimate the observed cooling of the lower stratosphere and overestimate the warming of the troposphere. Although the precise causes of such differences are unclear, model biases in lower stratospheric temperature trends are likely to be reduced by more realistic treatment of stratospheric ozone depletion and volcanic aerosol forcing.


Assuntos
Atmosfera , Mudança Climática , Atividades Humanas , Modelos Teóricos , Temperatura , Simulação por Computador , Geografia , Humanos , Razão Sinal-Ruído
18.
Acad Psychiatry ; 40(2): 295-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26482891

RESUMO

OBJECTIVE: This study was done to determine the effectiveness of a lecture and exposure to electroconvulsive therapy (ECT) followed by interaction with patient, on medical students' knowledge about and attitude towards electroconvulsive therapy. METHODS: A questionnaire was administered to second year medical students to determine their baseline knowledge about and attitude towards electroconvulsive therapy. Following this, they underwent two educational interventions, a lecture on ECT and exposure to the procedure and interaction with the patient and relative, and their knowledge and attitude were reassessed after each intervention using the same questionnaire. RESULTS: Eighty-one students completed all the three assessments. Students' knowledge about ECT at baseline was minimal (mean 3.58 out of 12). Their knowledge increased significantly after the lecture (mean 10.3), and there was further increase following exposure to the procedure and subsequent interaction with the patient and relative (mean 11.1). At baseline, students had an overall negative attitude towards ECT. There was significant improvement on all attitude items following the lecture. Exposure to the procedure resulted in further improvement in attitude regarding whether ECT is a cruel treatment and has to be used as a last resort. CONCLUSIONS: Exposure to ECT in lecture and clinical scenarios followed by interaction with the patient should be included in the undergraduate medical curriculum to improve students' knowledge and attitude about this safe, effective, and potentially lifesaving treatment modality.


Assuntos
Atitude do Pessoal de Saúde , Eletroconvulsoterapia , Conhecimentos, Atitudes e Prática em Saúde , Estudantes de Medicina/psicologia , Adolescente , Currículo , Feminino , Humanos , Índia , Masculino , Inquéritos e Questionários , Adulto Jovem
19.
Environ Sci Technol ; 49(8): 4834-41, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25816113

RESUMO

We examined the impact of large US emissions changes, similar to those estimated to have occurred between 2005 and 2012 (high and low emissions cases, respectively), on inorganic PM2.5 sensitivities to further NOx, SO2, and NH3 emissions reductions using the chemical transport model GEOS-Chem. Sensitivities to SO2 emissions are larger year-round and across the US in the low emissions case than the high emissions case due to more aqueous-phase SO2 oxidation. Sensitivities to winter NOx emissions are larger in the low emissions case, more than 2× those of the high emissions case in parts of the northern Midwest. Sensitivities to NH3 emissions are smaller (∼40%) in the low emissions case, year-round, and across the US. Differences in NOx and NH3 sensitivities indicate an altered atmospheric acidity. Larger sensitivities to SO2 and NOx in the low emissions case imply that reducing these emissions may improve air quality more now than they would have in 2005; conversely, NH3 reductions may not improve air quality as much as previously assumed.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Modelos Teóricos , Óxidos de Nitrogênio/análise , Tamanho da Partícula , Estações do Ano , Dióxido de Enxofre/análise , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa