RESUMO
Nucleotide excision repair (NER) is a conserved, flexible mechanism responsible for the removal of bulky, helix-distorting DNA lesions, like ultraviolet damage or cisplatin adducts, but its role in the repair of lesions generated by oxidative stress is still not clear. The helicase XPD/ERCC2, one of the two helicases of the transcription complex IIH, together with XPB, participates both in NER and in RNA pol II-driven transcription. In this work, we investigated the responses of distinct XPD-mutated cell lines to the oxidative stress generated by photoactivated methylene blue (MB) and KBrO3 treatments. The studied cells are derived from patients with XPD mutations but expressing different clinical phenotypes, including xeroderma pigmentosum (XP), XP and Cockayne syndrome (XP-D/CS) and trichothiodystrophy (TTD). We show by different approaches that all XPD-mutated cell lines tested were sensitive to oxidative stress, with those from TTD patients being the most sensitive. Host cell reactivation (HCR) assays showed that XP-D/CS and TTD cells have severely impaired repair capacity of oxidised lesions in plasmid DNA, and alkaline comet assays demonstrated the induction of significantly higher amounts of DNA strand breaks after treatment with photoactivated MB in these cells compared to wild-type cells. All XPD-mutated cells presented strong S/G2 arrest and persistent γ-H2AX staining after photoactivated MB treatment. Taken together, these results indicate that XPD participates in the repair of lesions induced by the redox process, and that XPD mutations lead to differences in the response to oxidatively induced damage.
Assuntos
Mutação , Estresse Oxidativo , Proteína Grupo D do Xeroderma Pigmentoso/genética , Biomarcadores , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ensaio Cometa , Dano ao DNA , Reparo do DNA , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Citometria de Fluxo , Humanos , Mutação/efeitos dos fármacos , Mutação/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Raios UltravioletaRESUMO
Genome lesions trigger biological responses that help cells manage damaged DNA, improving cell survival. Pol eta is a translesion synthesis (TLS) polymerase that bypasses lesions that block replicative polymerases, avoiding continued stalling of replication forks, which could lead to cell death. p53 also plays an important role in preventing cell death after ultraviolet (UV) light exposure. Intriguingly, we show that p53 does so by favoring translesion DNA synthesis by pol eta. In fact, the p53-dependent induction of pol eta in normal and DNA repair-deficient XP-C human cells after UV exposure has a protective effect on cell survival after challenging UV exposures, which was absent in p53- and Pol H-silenced cells. Viability increase was associated with improved elongation of nascent DNA, indicating the protective effect was due to more efficient lesion bypass by pol eta. This protection was observed in cells proficient or deficient in nucleotide excision repair, suggesting that, from a cell survival perspective, proper bypass of DNA damage can be as relevant as removal. These results indicate p53 controls the induction of pol eta in DNA damaged human cells, resulting in improved TLS and enhancing cell tolerance to DNA damage, which parallels SOS responses in bacteria.
Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , DNA/biossíntese , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular , Sobrevivência Celular , Cromatina/metabolismo , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/genética , Relação Dose-Resposta à Radiação , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Raios UltravioletaRESUMO
The down-regulation of the tumor-suppressor gene RASSF1A has been shown to increase cell proliferation in several tumors. RASSF1A expression is regulated through epigenetic events involving the polycomb repressive complex 2 (PRC2); however, the molecular mechanisms modulating the recruitment of this epigenetic modifier to the RASSF1 locus remain largely unknown. Here, we identify and characterize ANRASSF1, an endogenous unspliced long noncoding RNA (lncRNA) that is transcribed from the opposite strand on the RASSF1 gene locus in several cell lines and tissues and binds PRC2. ANRASSF1 is transcribed through RNA polymerase II and is 5'-capped and polyadenylated; it exhibits nuclear localization and has a shorter half-life compared with other lncRNAs that bind PRC2. ANRASSF1 endogenous expression is higher in breast and prostate tumor cell lines compared with non-tumor, and an opposite pattern is observed for RASSF1A. ANRASSF1 ectopic overexpression reduces RASSF1A abundance and increases the proliferation of HeLa cells, whereas ANRASSF1 silencing causes the opposite effects. These changes in ANRASSF1 levels do not affect the RASSF1C isoform abundance. ANRASSF1 overexpression causes a marked increase in both PRC2 occupancy and histone H3K27me3 repressive marks, specifically at the RASSF1A promoter region. No effect of ANRASSF1 overexpression was detected on PRC2 occupancy and histone H3K27me3 at the promoter regions of RASSF1C and the four other neighboring genes, including two well-characterized tumor suppressor genes. Additionally, we demonstrated that ANRASSF1 forms an RNA/DNA hybrid and recruits PRC2 to the RASSF1A promoter. Together, these results demonstrate a novel mechanism of epigenetic repression of the RASSF1A tumor suppressor gene involving antisense unspliced lncRNA, in which ANRASSF1 selectively represses the expression of the RASSF1 isoform overlapping the antisense transcript in a location-specific manner. In a broader perspective, our findings suggest that other non-characterized unspliced intronic lncRNAs transcribed in the human genome might contribute to a location-specific epigenetic modulation of genes.
Assuntos
Proliferação de Células , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/metabolismo , Proteínas Supressoras de Tumor/genética , Ilhas de CpG , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Íntrons/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética , Proteínas Supressoras de Tumor/metabolismoRESUMO
Nucleotide excision repair (NER) is the most flexible of all known DNA-repair mechanisms, and XPG is a 3'-endonuclease that participates in NER. Mutations in this gene (ERCC5) may result in the human syndrome xeroderma pigmentosum (XP) and, in some cases, in the complex phenotype of Cockayne syndrome (CS). Two Brazilian XP siblings, who were mildly affected, were investigated and classified into the XP-G group. The cells from these patients were highly ultraviolet (UV) sensitive but not sensitive to photosensitized methylene blue, an agent that causes oxidative stress. This phenotype is in contrast to XP-G/CS cells, which are highly sensitive to this oxidative agent. Sequencing revealed a compound heterozygous genotype with two novel missense mutations: c.83C>A (p.Ala28Asp) and c.2904G>C (p.Trp968Cys). The first mutation maps to the catalytic site of the XPG protein, whereas the second may compromise binding to DNA. Functional assays indicated that the mutated alleles were unable to perform the complete repair of UV-irradiated plasmids; however, full correction was observed for oxidatively damaged plasmids. Therefore, the XP phenotype of these patients is caused by novel missense mutations that specifically affect DNA repair for UV- but not oxidative-stress-induced DNA damage, and implications for XP versus XP/CS phenotype are discussed.
Assuntos
Sobrevivência Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Adolescente , Alelos , Sequência de Aminoácidos , Brasil , Linhagem Celular , Clonagem Molecular , Síndrome de Cockayne/genética , Dano ao DNA/efeitos da radiação , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos da radiação , Heterozigoto , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Estresse Oxidativo/efeitos da radiação , Fenótipo , Conformação Proteica , Alinhamento de Sequência , Análise de Sequência de DNA , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Adulto JovemRESUMO
Base excision repair (BER) defects and concomitant oxidative DNA damage accumulation play a role in the etiology and progression of late-onset Alzheimer's disease (LOAD). However, it is not known whether genetic variant(s) of specific BER genes contribute to reduced BER activity in LOAD patients and whether they are associated with risk, development and/or progression of LOAD. Therefore, we performed targeted next generation sequencing for three BER genes, uracil glycosylase (UNG), endonuclease VIII-like DNA glycosylase 1 (NEIL1) and polymerase ß (POLß) including promoter, exonic and intronic regions in peripheral blood samples and postmortem brain tissues (temporal cortex, TC and cerebellum, CE) from LOAD patients, high-pathology control and cognitively normal age-matched controls. In addition, the known LOAD risk factor, APOE was included in this study to test whether any BER gene variants associate with APOE variants, particularly APOE ε4. We show that UNG carry five significant variants (rs1610925, rs2268406, rs80001089, rs1018782 and rs1018783) in blood samples of Turkish LOAD patients compared to age-matched controls and one of them (UNG rs80001089) is also significant in TC from Brazilian LOAD patients (p<0.05). The significant variants present only in CE and TC from LOAD are UNG rs2569987 and POLß rs1012381950, respectively. There is also significant epistatic relationship (p = 0.0410) between UNG rs80001089 and NEIL1 rs7182283 in TC from LOAD subjects. Our results suggest that significant BER gene variants may be associated with the risk of LOAD in non-APOE ε4 carriers. On the other hand, there are no significant UNG, NEIL1 and POLß variants that could affect their protein level and function, suggesting that there may be other factors such as post-transcriptional or-translational modifications responsible for the reduced activities and protein levels of these genes in LOAD pathogenesis. Further studies with increased sample size are needed to confirm the relationship between BER variants and LOAD risk.
Assuntos
Doença de Alzheimer/genética , Apolipoproteínas E/metabolismo , Encéfalo , DNA Glicosilases/genética , DNA Polimerase beta/genética , Reparo do DNA , Polimorfismo Genético , Uracila-DNA Glicosidase/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apolipoproteínas E/genética , DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , Feminino , Humanos , Masculino , Fatores de Risco , Uracila-DNA Glicosidase/metabolismoRESUMO
Accumulation of oxidative mitochondrial DNA (mtDNA) damage and impaired base excision repair (BER) in brains have been associated with Alzheimer's disease (AD). However, it is still not clear how these affect mtDNA stability, as reported levels of mtDNA mutations in AD are conflicting. Thus, we investigated whether alterations in BER correlate with mtDNA instability in AD using postmortem brain samples from cognitively normal AD subjects and individuals who show neuropathological features of AD, but remained cognitively normal (high-pathology control). To date, no data on DNA repair and mtDNA stability are available for these individuals. BER activities, mtDNA mutations, and mtDNA copy number were measured in the nuclear and mitochondrial extracts. Significantly lower uracil DNA glycosylase activity was detected in nuclear and mitochondrial extracts from AD subjects, while apurinic/apyrimidinic endonuclease activity was similar in all groups. Although mtDNA mutation frequency was similar in all groups, mtDNA copy number was significantly decreased in the temporal cortex of AD brains but not of high-pathology control subjects. Our results show that lower mitochondrial uracil DNA glycosylase activity does not result in increased mutagenesis, but rather in depletion of mtDNA in early-affected brain regions during AD development.
Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Reparo do DNA/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Feminino , Dosagem de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Estresse Oxidativo/genética , Lobo Temporal/metabolismo , Uracila-DNA Glicosidase/metabolismoRESUMO
Genomic instability drives tumorigenesis and DNA repair defects are associated with elevated cancer. Metabolic alterations are also observed during tumorigenesis, although a causal relationship between these has not been clearly established. Xeroderma pigmentosum (XP) is a DNA repair disease characterized by early cancer. Cells with reduced expression of the XPC protein display a metabolic shift from OXPHOS to glycolysis, which was linked to accumulation of nuclear DNA damage and oxidants generation via NOX-1. Using XP-C cells, we show that mitochondrial respiratory complex I (CI) is impaired in the absence of XPC, while complex II (CII) is upregulated in XP-C cells. The CI/CII metabolic shift was dependent on XPC, as XPC complementation reverted the phenotype. We demonstrate that mitochondria are the primary source of H2O2 and glutathione peroxidase activity is compromised. Moreover, mtDNA is irreversibly damaged and accumulates deletions. XP-C cells were more sensitive to the mitochondrial inhibitor antimycin A, an effect also prevented in XPC-corrected cells. Our results show that XPC deficiency leads to alterations in mitochondrial redox balance with a CI/CII shift as a possible adaptation to lower CI activity, but at the cost of sensitizing XP-C cells to mitochondrial oxidative stress.