Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 7(12): e1002425, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22174685

RESUMO

Myeloid blood cells are largely resistant to infection with human immunodeficiency virus type 1 (HIV-1). Recently, it was reported that Vpx from HIV-2/SIVsm facilitates infection of these cells by counteracting the host restriction factor SAMHD1. Here, we independently confirmed that Vpx interacts with SAMHD1 and targets it for ubiquitin-mediated degradation. We found that Vpx-mediated SAMHD1 degradation rendered primary monocytes highly susceptible to HIV-1 infection; Vpx with a T17A mutation, defective for SAMHD1 binding and degradation, did not show this activity. Several single nucleotide polymorphisms in the SAMHD1 gene have been associated with Aicardi-Goutières syndrome (AGS), a very rare and severe autoimmune disease. Primary peripheral blood mononuclear cells (PBMC) from AGS patients homozygous for a nonsense mutation in SAMHD1 (R164X) lacked endogenous SAMHD1 expression and support HIV-1 replication in the absence of exogenous activation. Our results indicate that within PBMC from AGS patients, CD14+ cells were the subpopulation susceptible to HIV-1 infection, whereas cells from healthy donors did not support infection. The monocytic lineage of the infected SAMHD1 -/- cells, in conjunction with mostly undetectable levels of cytokines, chemokines and type I interferon measured prior to infection, indicate that aberrant cellular activation is not the cause for the observed phenotype. Taken together, we propose that SAMHD1 protects primary CD14+ monocytes from HIV-1 infection confirming SAMHD1 as a potent lentiviral restriction factor.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Predisposição Genética para Doença/genética , Infecções por HIV/genética , Proteínas Monoméricas de Ligação ao GTP/deficiência , Proteínas Monoméricas de Ligação ao GTP/genética , Células Mieloides/virologia , Malformações do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/metabolismo , Doenças Autoimunes do Sistema Nervoso/virologia , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , HIV-1/metabolismo , Humanos , Immunoblotting , Imunoprecipitação , Receptores de Lipopolissacarídeos/metabolismo , Microscopia Confocal , Mutação de Sentido Incorreto , Células Mieloides/metabolismo , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/virologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína 1 com Domínio SAM e Domínio HD , Espectrometria de Massas em Tandem , Transfecção
2.
Sci Rep ; 6: 26616, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27229711

RESUMO

Deoxynucleotide triphosphates (dNTPs) are essential for efficient hepatitis B virus (HBV) replication. Here, we investigated the influence of the restriction factor SAMHD1, a dNTP hydrolase (dNTPase) and RNase, on HBV replication. We demonstrated that silencing of SAMHD1 in hepatic cells increased HBV replication, while overexpression had the opposite effect. SAMHD1 significantly affected the levels of extracellular viral DNA as well as intracellular reverse transcription products, without affecting HBV RNAs or cccDNA. SAMHD1 mutations that interfere with the dNTPase activity (D137N) or in the catalytic center of the histidine-aspartate (HD) domain (D311A), and a phospho-mimetic mutation (T592E), abrogated the inhibitory activity. In contrast, a mutation diminishing the potential RNase but not dNTPase activity (Q548A) and a mutation disabling phosphorylation (T592A) did not affect antiviral activity. Moreover, HBV restriction by SAMHD1 was rescued by addition of deoxynucleosides. Although HBV infection did not directly affect protein level or phosphorylation of SAMHD1, the virus upregulated intracellular dATPs. Interestingly, SAMHD1 was dephosphorylated, thus in a potentially antiviral-active state, in primary human hepatocytes. Furthermore, SAMHD1 was upregulated by type I and II interferons in hepatic cells. These results suggest that SAMHD1 is a relevant restriction factor for HBV and restricts reverse transcription through its dNTPase activity.


Assuntos
Vírus da Hepatite B/fisiologia , Hepatócitos , Mutação de Sentido Incorreto , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Replicação Viral/fisiologia , Substituição de Aminoácidos , Células Hep G2 , Hepatócitos/enzimologia , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Proteína 1 com Domínio SAM e Domínio HD/genética
3.
Viruses ; 3(7): 1112-30, 2011 07.
Artigo em Inglês | MEDLINE | ID: mdl-21994773

RESUMO

Virus infections elicit an immediate innate response involving antiviral factors. The activities of some of these factors are, in turn, blocked by viral countermeasures. The ensuing battle between the host and the viruses is crucial for determining whether the virus establishes a foothold and/or induces adaptive immune responses. A comprehensive systems-level understanding of the repertoire of anti-viral effectors in the context of these immediate virus-host responses would provide significant advantages in devising novel strategies to interfere with the initial establishment of infections. Recent efforts to identify cellular factors in a comprehensive and unbiased manner, using genome-wide siRNA screens and other systems biology "omics" methodologies, have revealed several potential anti-viral effectors for viruses like Human immunodeficiency virus type 1 (HIV-1), Hepatitis C virus (HCV), West Nile virus (WNV), and influenza virus. This review describes the discovery of novel viral restriction factors and discusses how the integration of different methods in systems biology can be used to more comprehensively identify the intimate interactions of viruses and the cellular innate resistance.


Assuntos
Imunidade Inata/imunologia , Biologia de Sistemas/métodos , Viroses/imunologia , Vírus/imunologia , Genômica/métodos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Viroses/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa