Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Immunogenetics ; 75(6): 517-530, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37853246

RESUMO

Yersinia pestis is a historically important vector-borne pathogen causing plague in humans and other mammals. Contemporary zoonotic infections with Y. pestis still occur in sub-Saharan Africa, including Tanzania and Madagascar, but receive relatively little attention. Thus, the role of wildlife reservoirs in maintaining sylvatic plague and spillover risks to humans is largely unknown. The multimammate rodent Mastomys natalensis is the most abundant and widespread rodent in peri-domestic areas in Tanzania, where it plays a major role as a Y. pestis reservoir in endemic foci. Yet, how M. natalensis' immunogenetics contributes to the maintenance of plague has not been investigated to date. Here, we surveyed wild M. natalensis for Y. pestis vectors, i.e., fleas, and tested for the presence of antibodies against Y. pestis using enzyme-linked immunosorbent assays (ELISA) in areas known to be endemic or without previous records of Y. pestis in Tanzania. We characterized the allelic and functional (i.e., supertype) diversity of the major histocompatibility complex (MHC class II) of M. natalensis and investigated links to Y. pestis vectors and infections. We detected antibodies against Y. pestis in rodents inhabiting both endemic areas and areas considered non-endemic. Of the 111 nucleotide MHC alleles, only DRB*016 was associated with an increased infestation with the flea Xenopsylla. Surprisingly, we found no link between MHC alleles or supertypes and antibodies of Y. pestis. Our findings hint, however, at local adaptations towards Y. pestis vectors, an observation that more exhaustive sampling could unwind in the future.


Assuntos
Peste , Sifonápteros , Yersinia pestis , Animais , Humanos , Peste/genética , Peste/epidemiologia , Tanzânia/epidemiologia , Imunogenética , Yersinia pestis/genética , Sifonápteros/genética , Murinae/genética , Anticorpos
2.
PLoS Pathog ; 17(11): e1009675, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34748618

RESUMO

Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC diversity and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene diversity gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa (Odoribacter, Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, correlative evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC diversity and microbial flora as contributing factors of parasite infection.


Assuntos
Infecções por Adenoviridae/imunologia , Bactérias/crescimento & desenvolvimento , Cheirogaleidae/imunologia , Microbioma Gastrointestinal , Genes MHC da Classe II , Genes MHC Classe I , Helmintíase/imunologia , Adenoviridae/fisiologia , Infecções por Adenoviridae/virologia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Cheirogaleidae/genética , Cheirogaleidae/parasitologia , Cheirogaleidae/virologia , Helmintíase/parasitologia , Helmintos/fisiologia , Polimorfismo Genético
3.
Mol Ecol ; 32(14): 3989-4002, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37203872

RESUMO

Understanding the immunogenetic basis of coronavirus (CoV) susceptibility in major pathogen reservoirs, such as bats, is central to inferring their zoonotic potential. Members of the cryptic Hipposideros bat species complex differ in CoV susceptibility, but the underlying mechanisms remain unclear. The genes of the major histocompatibility complex (MHC) are the best understood genetic basis of pathogen resistance, and differences in MHC diversity are one possible reason for asymmetrical infection patterns among closely related species. Here, we aimed to link asymmetries in observed CoV (CoV-229E, CoV-2B and CoV-2Bbasal) susceptibility to immunogenetic differences amongst four Hipposideros bat species. From the 2072 bats assigned to their respective species using the mtDNA cytochrome b gene, members of the most numerous and ubiquitous species, Hipposideros caffer D, were most infected with CoV-229E and SARS-related CoV-2B. Using a subset of 569 bats, we determined that much of the existent allelic and functional (i.e. supertype) MHC DRB class II diversity originated from common ancestry. One MHC supertype shared amongst all species, ST12, was consistently linked to susceptibility with CoV-229E, which is closely related to the common cold agent HCoV-229E, and infected bats and those carrying ST12 had a lower body condition. The same MHC supertype was connected to resistance to CoV-2B, and bats with ST12 were less likely be co-infected with CoV-229E and CoV-2B. Our work suggests a role of immunogenetics in determining CoV susceptibility in bats. We advocate for the preservation of functional genetic and species diversity in reservoirs as a means of mitigating the risk of disease spillover.


Assuntos
Quirópteros , Coronavirus Humano 229E , Infecções por Coronavirus , Coronavirus , Animais , Quirópteros/genética , Genes MHC da Classe II , Filogenia , Coronavirus/genética , Coronavirus Humano 229E/genética , Antígenos de Histocompatibilidade Classe II/genética
4.
Glob Chang Biol ; 29(20): 5816-5828, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485753

RESUMO

Climate change and climate-driven increases in infectious disease threaten wildlife populations globally. Gut microbial responses are predicted to either buffer or exacerbate the negative impacts of these twin pressures on host populations. However, examples that document how gut microbial communities respond to long-term shifts in climate and associated disease risk, and the consequences for host survival, are rare. Over the past two decades, wild meerkats inhabiting the Kalahari have experienced rapidly rising temperatures, which is linked to the spread of tuberculosis (TB). We show that over the same period, the faecal microbiota of this population has become enriched in Bacteroidia and impoverished in lactic acid bacteria (LAB), a group of bacteria including Lactococcus and Lactobacillus that are considered gut mutualists. These shifts occurred within individuals yet were compounded over generations, and were better explained by mean maximum temperatures than mean rainfall over the previous year. Enriched Bacteroidia were additionally associated with TB exposure and disease, the dry season and poorer body condition, factors that were all directly linked to reduced future survival. Lastly, abundances of LAB taxa were independently and positively linked to future survival, while enriched taxa did not predict survival. Together, these results point towards extreme temperatures driving an expansion of a disease-associated pathobiome and loss of beneficial taxa. Our study provides the first evidence from a longitudinally sampled population that climate change is restructuring wildlife gut microbiota, and that these changes may amplify the negative impacts of climate change through the loss of gut mutualists. While the plastic response of host-associated microbiotas is key for host adaptation under normal environmental fluctuations, extreme temperature increases might lead to a breakdown of coevolved host-mutualist relationships.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Mudança Climática , Animais Selvagens , Microbioma Gastrointestinal/fisiologia , Bactérias
5.
Proc Natl Acad Sci U S A ; 117(30): 17977-17983, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32651267

RESUMO

Hepatitis delta virus (HDV) is a human hepatitis-causing RNA virus, unrelated to any other taxonomic group of RNA viruses. Its occurrence as a satellite virus of hepatitis B virus (HBV) is a singular case in animal virology for which no consensus evolutionary explanation exists. Here we present a mammalian deltavirus that does not occur in humans, identified in the neotropical rodent species Proechimys semispinosus The rodent deltavirus is highly distinct, showing a common ancestor with a recently described deltavirus in snakes. Reverse genetics based on a tandem minus-strand complementary DNA genome copy under the control of a cytomegalovirus (CMV) promoter confirms autonomous genome replication in transfected cells, with initiation of replication from the upstream genome copy. In contrast to HDV, a large delta antigen is not expressed and the farnesylation motif critical for HBV interaction is absent from a genome region that might correspond to a hypothetical rodent large delta antigen. Correspondingly, there is no evidence for coinfection with an HBV-related hepadnavirus based on virus detection and serology in any deltavirus-positive animal. No other coinfecting viruses were detected by RNA sequencing studies of 120 wild-caught animals that could serve as a potential helper virus. The presence of virus in blood and pronounced detection in reproductively active males suggest horizontal transmission linked to competitive behavior. Our study establishes a nonhuman, mammalian deltavirus that occurs as a horizontally transmitted infection, is potentially cleared by immune response, is not focused in the liver, and possibly does not require helper virus coinfection.


Assuntos
Coinfecção , Infecções por Hepadnaviridae/veterinária , Hepadnaviridae/fisiologia , Hepatite D/veterinária , Vírus Delta da Hepatite/fisiologia , Doenças dos Roedores/virologia , Roedores/virologia , Animais , Linhagem Celular Tumoral , Genoma Viral , Genômica/métodos , Hepadnaviridae/classificação , Vírus Delta da Hepatite/classificação , Humanos , Filogenia
6.
Proc Biol Sci ; 289(1981): 20220609, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975437

RESUMO

Inter-individual differences in gut microbiota composition are hypothesized to generate variation in host fitness-a premise for the evolution of host-gut microbe symbioses. However, recent evidence suggests that gut microbial communities are highly dynamic, challenging the notion that individuals harbour unique gut microbial phenotypes. Leveraging a long-term dataset of wild meerkats, we reconcile these concepts by demonstrating that the relative importance of identity for shaping gut microbiota phenotypes depends on the temporal scale. Across meerkat lifespan, year-to-year variation overshadowed the effects of identity and social group in predicting gut microbiota composition, with identity explaining on average less than 2% of variation. However, identity was the strongest predictor of microbial phenotypes over short sampling intervals (less than two months), predicting on average 20% of variation. The effect of identity was also dependent on meerkat age, with the gut microbiota becoming more individualized and stable as meerkats aged. Nevertheless, while the predictive power of identity was negligible after two months, gut microbiota composition remained weakly individualized compared to that of other meerkats for up to 1 year. These findings illuminate the degree to which individualized gut microbial signatures can be expected, with important implications for the time frames over which gut microbial phenotypes may mediate host physiology, behaviour and fitness in natural populations.


Assuntos
Microbioma Gastrointestinal , Microbiota , Longevidade , RNA Ribossômico 16S , Simbiose
7.
Mol Ecol ; 31(14): 3917-3933, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621392

RESUMO

Establishment and development of gut microbiota during vertebrates' early life are likely to be important predictors of health and fitness. Host-parental and host-environment interactions are essential to these processes. In oviparous reptiles whose nests represent a source of the parent's microbial inocula, the relative role of host-selection and stochastic environmental factors during gut microbial assemblage remains unknown. We sampled eggs incubated in artificial nests as well as hatchlings and juveniles (up to 30 days old) of the yellow-spotted Amazon river turtle (Podocnemis unifilis) developing in tubs filled with river water. We examined the relative role of the internal egg microbiota and the abiotic environment on hatchling and juvenile turtle's cloacal microbiota assemblages during the first 30 days of development. A mean of 71% of ASVs in hatched eggs could be traced to the nest environmental microbiota and in turn a mean of 77% of hatchlings' cloacal ASVs were traced to hatched eggs. Between day 5 and 20 of juvenile turtle's development, the river water environment plays a key role in the establishment of the gut microbiota (accounting for a mean of 13%-34.6% of cloacal ASVs) and strongly influences shifts in microbial diversity and abundance. After day 20, shifts in gut microbiota composition were mainly driven by host-selection processes. Therefore, colonization by environmental microbiota is key in the initial stages of establishing the host's gut microbiota which is subsequently shaped by host-selection processes. Our study provides a novel quantitative understanding of the host-environment interactions during gut microbial assemblage of oviparous reptiles.


Assuntos
Microbioma Gastrointestinal , Microbiota , Tartarugas , Animais , Rios , Água
8.
Mol Ecol ; 31(12): 3342-3359, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35510794

RESUMO

Astroviruses (AstVs) infect numerous mammalian species including reservoirs such as bats. Peptides encoded by the genes of the highly polymorphic Major Histocompatibility Complex (MHC) form the first line of host defence against pathogens. Aside from direct involvement in mounting adaptive immune responses, MHC class II genes are hypothesized to regulate gut commensal diversity and shape the production of immune-modulatory substances by microbes, indirectly affecting host susceptibility. Despite initial empirical evidence for the link between host MHC and the microbiota, associations among these factors remain largely unknown. To fill this gap, we examined MHC allelic diversity and constitution, the gut bacterial community and abundance pattern of a wild population of a neotropical bat (Artibeus jamaicensis) challenged by AstV infections. First, we show an age-dependent relationship between the host MHC class II diversity and constitution and the gut microbiota in AstV-uninfected bats. Crucially, these associations changed in AstV-infected bats. Additionally, we identify changes in the abundance of specific bacterial taxa linked to the presence of certain MHC supertypes and AstV infection. We suggest changes in the microbiota to be either a result of AstV infection or the MHC-mediated modulation of microbial communities. The latter could subsequently affect microbe-mediated immunity and resistance against AstV infection. Our results emphasize that the reciprocal nature of host immune genetics, gut microbial diversity and pathogen infection require attention, which are particularly important given their repercussions for disease susceptibility and severity in wild animal populations with a history of zoonotic spillover and frequent human contact.


Assuntos
Quirópteros , Microbioma Gastrointestinal , Microbiota , Animais , Bactérias , Quirópteros/genética , Microbioma Gastrointestinal/genética , Complexo Principal de Histocompatibilidade/genética
9.
J Anim Ecol ; 91(11): 2220-2234, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36097677

RESUMO

Human habitat disturbance affects both species diversity and intraspecific genetic diversity, leading to correlations between these two components of biodiversity (termed species-genetic diversity correlation, SGDC). However, whether SGDC predictions extend to host-associated communities, such as the intestinal parasite and gut microbial diversity, remains largely unexplored. Additionally, the role of dominant generalist species is often neglected despite their importance in shaping the environment experienced by other members of the ecological community, and their role as source, reservoir and vector of zoonotic diseases. New analytical approaches (e.g. structural equation modelling, SEM) can be used to assess SGDC relationships and distinguish among direct and indirect effects of habitat characteristics and disturbance on the various components of biodiversity. With six concrete and biologically sound models in mind, we collected habitat characteristics of 22 study sites from four distinct landscapes located in central Panama. Each landscape differed in the degree of human disturbance and fragmentation measured by several quantitative variables, such as canopy cover, canopy height and understorey density. In terms of biodiversity, we estimated on the one hand, (a) small mammal species diversity, and, on the other hand, (b) genome-wide diversity, (c) intestinal parasite diversity and (d) gut microbial heterogeneity of the most dominant generalist species (Tome's spiny rat, Proechimys semispinosus). We used SEMs to assess the links between habitat characteristics and biological diversity measures. The best supported SEM suggested that habitat characteristics directly and positively affect the richness of small mammals, the genetic diversity of P. semispinosus and its gut microbial heterogeneity. Habitat characteristics did not, however, directly impact intestinal parasite diversity. We also detected indirect, positive effects of habitat characteristics on both host-associated assemblages via small mammal richness. For microbes, this is likely linked to cross species transmission, particularly in shared and/or anthropogenically altered habitats, whereas host diversity mitigates parasite infections. The SEM revealed an additional indirect but negative effect on intestinal parasite diversity via host genetic diversity. Our study showcases that habitat alterations not only affect species diversity and host genetic diversity in parallel, but also species diversity of host-associated assemblages. The impacts from human disturbance are therefore expected to ripple through entire ecosystems with far reaching effects felt even by generalist species.


Las perturbaciones antropogénicas sobre los hábitats naturales pueden afectar tanto a la diversidad de las especies como a la diversidad genética intraespecífica, dando lugar a correlaciones entre estos dos elementos de la biodiversidad (denominados correlación de la diversidad genética de las especies, SGDC por sus siglas en inglés). Sin embargo, todavía queda sin explorar si las predicciones de la SGDC afectan a las comunidades de parásitos y microorganismos intestinales asociadas al hospedador. Adicionalmente, el rol que juegan las especies generalistas, especialmente aquéllas dominantes, suele ser descuidado, a pesar de la importancia de control que ejercen sobre la estructura de la comunidad, y su rol como fuente, reservorio y vector de enfermedades zoonóticas. Para poder evaluar las relaciones de SGDC y distinguir entre los efectos directos e indirectos que tienen las características del hábitat y las perturbaciones sobre los distintos componentes de la biodiversidad, se pueden utilizar nuevos enfoques analíticos como por ejemplo los modelos de ecuaciones estructurales (SEM, por sus siglas en inglés). Considerando seis modelos específicos y biológicamente sólidos, recopilamos las características del hábitat de 22 sitios ubicados en cuatro paisajes distintos situados en el centro de Panamá. Cada paisaje difería en el grado de perturbación antropogénica y fragmentación, medido por diferentes variables cuantitativas, como la cobertura del dosel, la altura del dosel y la densidad del sotobosque. En términos de biodiversidad, por un lado estimamos (1) la diversidad de especies de pequeños mamíferos y, por otro lado (2) la diversidad del genoma completo, (3) la diversidad de parásitos intestinales, y (4) la heterogeneidad de las comunidades microbianas del intestino de la especie generalista más dominante, la rata espinosa de Tomes Proechimys semispinosus. Para evaluar los vínculos entre las características del hábitat y las medidas de diversidad biológica se utilizó el modelado SEM. El SEM mejor apoyado sugirió que las características del hábitat afectan directa y positivamente a la abundancia de pequeños mamíferos, a la diversidad genética de P. semispinosus y a la heterogeneidad microbiana intestinal. Sin embargo, se observó que las características del hábitat no tienen un efecto directo en la diversidad de parásitos intestinales. Aparte de estos efectos directos, detectamos efectos indirectos y positivos de las características del hábitat en ambos conjuntos asociados al hospedador (diversidad de parásitos y microorganismos intestinales) a través de la abundancia de pequeños mamíferos. En el caso de las comunidades microbianas, esto está probablemente relacionado con la transmisión interespecífica, especialmente en hábitats compartidos y/o antropogénicamente alterados; mientras que la diversidad de hospedadores mitiga las infecciones de parásitos. El SEM reveló un efecto indirecto adicional pero negativo sobre la diversidad de parásitos intestinales a través de la diversidad genética de los hospedadores. Nuestro estudio muestra que los patrones de SGDC se filtran a través de las varias capas de diversidad biológica, añadiendo los ensamblajes asociados al hospedador como componentes biológicos afectados por las alteraciones del hábitat.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Roedores , Mamíferos , Panamá
10.
BMC Microbiol ; 20(1): 292, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32962670

RESUMO

BACKGROUND: The skin microbiome serves as a first line defense against pathogens in vertebrates. In amphibians, it has the potential to protect against the chytrid fungus Batrachochytrium dendrobatis (Bd), a likely agent of amphibian declines. Alteration of the microbiome associated with unfavorable environmental changes produced by anthropogenic activities may make the host more susceptible to pathogens. Some amphibian species that were thought to be "extinct" have been rediscovered years after population declines in the late 1980s probably due to evolved Bd-resistance and are now threatened by anthropogenic land-use changes. Understanding the effects of habitat disturbance on the host skin microbiome is relevant for understanding the health of these species, along with its susceptibility to pathogens such as Bd. Here, we investigate the influence of habitat alteration on the skin bacterial communities as well as specifically the putative Bd-inhibitory bacterial communities of the montane frog Lithobates vibicarius. This species, after years of not being observed, was rediscovered in small populations inhabiting undisturbed and disturbed landscapes, and with continuous presence of Bd. RESULTS: We found that cutaneous bacterial communities of tadpoles and adults differed between undisturbed and disturbed habitats. The adults from disturbed habitats exhibited greater community dispersion than those from undisturbed habitats. We observed a higher richness of putative Bd-inhibitory bacterial strains in adults from disturbed habitats than in those from undisturbed habitats, as well as a greater number of these potential protective bacteria with a high relative abundance. CONCLUSIONS: Our findings support the microbial "Anna Karenina principle", in which disturbance is hypothesized to cause greater microbial dispersion in communities, a so-called dysbiosis, which is a response of animal microbiomes to stress factors that decrease the ability of the host or its microbiome to regulate community composition. On the positive side, the high richness and relative abundance of putative Bd-inhibitory bacteria may indicate the development of a defense mechanism that enhances Bd-protection, attributed to a co-occurrence of more than 30-years of host and pathogen in these disturbed habitats. Our results provide important insight into the influence of human-modified landscapes on the skin microbiome and health implications of Bd-survivor species.


Assuntos
Bactérias/classificação , Batrachochytrium/genética , Microbiota/genética , Ranidae/microbiologia , Pele/microbiologia , Agricultura , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Batrachochytrium/isolamento & purificação , Batrachochytrium/patogenicidade , Costa Rica , Ecossistema , Humanos , Larva/microbiologia , Parques Recreativos , Simbiose/fisiologia
11.
Heredity (Edinb) ; 125(4): 184-199, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32616896

RESUMO

Toll-like receptors (TLRs) form part of the innate immune system and can recognize structurally conserved pathogen-associated molecular pattern (PAMP) molecules. Their functional importance in the resistance to pathogens has been documented in laboratory experimental settings and in humans. TLR diversity, however, has been rarely investigated in wildlife species. How the genetic diversity of TLRs is associated with various pathogens and how it is shaped by habitat disturbance are understudied. Therefore, we investigated the role of genetic diversity in the functionally important parts of TLR4 and TLR7 genes in resistance towards gastrointestinal nematodes and Hepacivirus infection. We chose a generalist study species, the rodent Proechimys semispinosus, because it is highly abundant in three Panamanian landscapes that differ in their degree of anthropogenic modification. We detected only two TLR7 haplotypes that differed by one synonymous single-nucleotide polymorphism (SNP) position. The TLR4 variability was higher, and we detected four TLR4 haplotypes that differed at one synonymous SNP and at three amino acid positions within the leucine-rich repeat region. Only TLR4 haplotypes had different frequencies in each landscape. Using generalized linear models, we found evidence that nematode loads and virus prevalence were influenced by both specific TLR4 haplotypes and landscape. Here, the variable "landscape" served as a surrogate for the important influential ecological factors distinguishing landscapes in our study, i.e. species diversity and host population density. Individuals carrying the common TLR4_Ht1 haplotype were less intensely infected by the most abundant strongyle nematode. Individuals carrying the rare TLR4_Ht3 haplotype were all Hepacivirus-positive, where those carrying the rare haplotype TLR4_Ht4 were less often infected by Hepacivirus than individuals with other haplotypes. Our study highlights the role of TLR diversity in pathogen resistance and the importance of considering immune genetic as well as ecological factors in order to understand the effects of anthropogenic changes on wildlife health.


Assuntos
Imunidade Inata , Roedores , Receptor 4 Toll-Like , Receptor 7 Toll-Like , Animais , Resistência à Doença/genética , Haplótipos , Hepacivirus , Infecções por Nematoides/veterinária , Panamá , Polimorfismo de Nucleotídeo Único , Roedores/genética , Roedores/imunologia , Receptor 4 Toll-Like/genética , Receptor 7 Toll-Like/genética , Viroses/veterinária
12.
Immunogenetics ; 71(8-9): 575-587, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31520134

RESUMO

The major histocompatibility complex (MHC) is one of the most diverse genetic regions under pathogen-driven selection because of its central role in antigen binding and immunity. The highest MHC variability, both in terms of the number of individual alleles and gene copies, has so far been found in passerine birds; this is probably attributable to passerine adaptation to both a wide geographic range and a diverse array of habitats. If extraordinary high MHC variation and duplication rates are adaptive features under selection during the evolution of ecologically and taxonomically diverse species, then similarly diverse MHC architectures should be found in bats. Bats are an extremely species-rich mammalian group that is globally widely distributed. Many bat species roost in multitudinous groups and have high contact rates with pathogens, conspecifics, and allospecifics. We have characterized the MHC class I diversity in 116 Panamanian Seba's short-tailed bats (Carollia perspicillata), a widely distributed, generalist, neotropical species. We have detected a remarkable individual and population-level diversity of MHC class I genes, with between seven and 22 alleles and a unique genotype in each individual. This diversity is comparable with that reported in passerine birds and, in both taxonomic groups, further variability has evolved through length polymorphisms. Our findings support the hypothesis that, for species with a geographically broader range, high MHC class I variability is particularly adaptive. Investigation of the details of the underlying adaptive processes and the role of the high MHC diversity in pathogen resistance are important next steps for a better understanding of the role of bats in viral evolution and as carriers of several deadly zoonotic viruses.


Assuntos
Quirópteros/genética , Evolução Molecular , Antígenos de Histocompatibilidade Classe I/genética , Polimorfismo Genético , Seleção Genética , Sequência de Aminoácidos , Animais , Quirópteros/imunologia , Éxons , Frequência do Gene , Geografia , Antígenos de Histocompatibilidade Classe I/imunologia , Filogenia , Homologia de Sequência
13.
Ecotoxicol Environ Saf ; 171: 843-853, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30660978

RESUMO

Preservation of the soil resources stability is of high importance for ecosystems, particularly in the current era of environmental change, which presents a severe pollution burden (e.g. by heavy metals) to soil fauna. Gut microbiomes are becoming recognized as important players in organism health, with comprehension of their perturbations in the polluted environment offering new insights into the nature and extent of heavy metal effects on the health of soil biota. Our aim was to investigate the effect of environmentally relevant heavy metal concentrations of cadmium (Cd) on the earthworm (Lumbricus terrestris) gut microbiota. Our results revealed that Cd exposure led to perturbations of earthworm gut microbiota with an increase in bacteria previously described as heavy metal resistant or able to bind heavy metals, revealing the potential of the earthworm-gut microbiota system in overcoming human-caused heavy metal pollution. Furthermore, an 'indicator species analysis' linked the bacterial genera Paenibacillus, Flavobacterium and Pseudomonas, with Cd treatment, suggesting these bacterial taxa as biomarkers of exposure in earthworms inhabiting Cd-stressed soils. The results of this study help to understand the impact of anthropogenic disturbance on soil fauna health and will have implications for environmental monitoring and protection of soil resources.


Assuntos
Cádmio/toxicidade , Biomarcadores Ambientais , Microbioma Gastrointestinal/efeitos dos fármacos , Oligoquetos/microbiologia , Poluentes do Solo/toxicidade , Animais , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Oligoquetos/efeitos dos fármacos
14.
Proc Biol Sci ; 285(1893): 20182426, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30963892

RESUMO

The products of the genes of the major histocompatibility complex (MHC) are known to be drivers of pathogen resistance and sexual selection enhancing offspring genetic diversity. The MHC further influences individual odour types and social communication. However, little is known about the receptors and their volatile ligands that are involved in this type of chemical communication. Here, we have investigated chemosensory receptor genes that ultimately enable females to assess male genes through odour cues. As a model, we used an invasive population of North American raccoons ( Procyon lotor) in Germany. We investigated the effect of two groups of chemosensory receptor genes-trace amine-associated receptors (TAARs) and olfactory receptors (ORs)-on MHC-dependent mate choice. Females with more alleles of the TAAR or OR loci were more likely to choose a male with a diverse MHC. We additionally found that MHC class I genes have a stronger effect on mate choice than the recently reported effect for MHC class II genes, probably because of their immunological relevance for viral resistance. Our study is among the first to show a genetic link between behaviour and chemosensory receptor genes. These results contribute to understanding the link between genetics, olfaction and associated life-history decisions.


Assuntos
Células Quimiorreceptoras/metabolismo , Preferência de Acasalamento Animal/fisiologia , Polimorfismo Genético , Guaxinins/fisiologia , Olfato/genética , Animais , Guaxinins/genética
15.
Oecologia ; 188(1): 289-302, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29936542

RESUMO

Anthropogenic environmental change can impact community and population traits such as species diversity and population densities, which have been shown to influence the prevalence of viruses in wildlife reservoirs. In particular, host species resilient to changes in their natural habitat may increase in numbers, which in turn can affect the prevalence of directly transmitted viruses. We have carried out a survey of small mammal communities in three tropical landscapes differing in their degree of environmental change in Central Panama and investigated the effects of community changes on Hepacivirus prevalence. The modification of continuous habitat into partly connected or isolated habitat patches during the past century was linked to changes in species diversity and species assemblages, which was further associated with shifts in the abundance of generalist marsupial (Didelphis marsupialis, Philander opossum) and rodent (Proechimys semispinosus) species. The latter has become dominant in isolated habitat patches and was the only identified Hepacivirus host in our study system. Our analyses suggest that, in addition to the effects of host age and sex, host population density in interaction with sex ratio is a crucial predictor of infection probability. Although we found no significant relationships between species diversity per se and infection probability, the lowest prevalence detected in the landscape with the highest species diversity indicates that shifts in species assemblages (e.g. changes in the presence and abundance of marsupial predators) impact the host's intraspecific contact rates, the probability of virus transmission and, thus, the virus prevalence. Our study additionally provides important data on the influence of human-induced landscape changes on infection probability and, therefore, on virus prevalence in wildlife and emphasizes the importance of a landscape-scale approach with concomitant consideration of the complex interactions between ecological factors.


Assuntos
Hepacivirus , Roedores , Animais , Ecologia , Ecossistema , Humanos , Panamá
16.
BMC Evol Biol ; 17(1): 56, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28219340

RESUMO

BACKGROUND: Selective pressure from pathogens is thought to shape the allelic diversity of major histocompatibility complex (MHC) genes in vertebrates. In particular, both local adaptation to pathogens and gene flow are thought to explain a large part of the intraspecific variation observed in MHC allelic diversity. To date, however, evidence that adaptation to locally prevalent pathogens maintains MHC variation is limited to species with limited dispersal and, hence, reduced gene flow. On the one hand high gene flow can disrupt local adaptation in species with high dispersal rates, on the other hand such species are much more likely to experience spatial variation in pathogen pressure, suggesting that there may be intense pathogen mediated selection pressure operating across breeding sites in panmictic species. Such pathogen mediated selection pressure operating across breeding sites should therefore be sufficient to maintain high MHC diversity in high dispersing species in the absence of local adaptation mechanisms. We used the Greater Flamingo, Phoenicopterus roseus, a long-lived colonial bird showing a homogeneous genetic structure of neutral markers at the scale of the Mediterranean region, to test the prediction that higher MHC allelic diversity with no population structure should occur in large panmictic populations of long-distance dispersing birds than in other resident species. RESULTS: We assessed the level of allelic diversity at the MHC Class IIB exon 2 from 116 individuals born in four different breeding colonies of Greater Flamingo in the Mediterranean region. We found one of the highest allelic diversity (109 alleles, 2 loci) of any non-passerine avian species investigated so far relative to the number of individuals and loci genotyped. There was no evidence of population structure between the four major Mediterranean breeding colonies. CONCLUSION: Our results suggest that local adaptation at MHC Class IIB in Greater Flamingos is constrained by high gene flow and high MHC diversity appears to be maintained by population wide pathogen-mediated selection rather than local pathogen-mediated selection. Further understanding of how pathogens vary across space and time will be crucial to further elucidate the mechanisms maintaining MHC diversity in species with large panmictic populations and high dispersal rates.


Assuntos
Aves/genética , Variação Genética , Antígenos de Histocompatibilidade Classe II/genética , Alelos , Animais , Éxons , Fluxo Gênico , Genes MHC da Classe II , Genótipo , Seleção Genética
17.
Mol Ecol ; 26(8): 2392-2404, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28141891

RESUMO

Sexual selection involving genetically disassortative mate choice is one of several evolutionary processes that can maintain or enhance population genetic variability. Examples of reproductive systems in which choosers (generally females) select mates depending on their major histocompatibility complex (MHC) genes have been reported for several vertebrate species. Notably, the role of MHC-dependent choice not in mating contexts, but in other kinds of social interactions such as in the establishment of complex social systems, has not yet drawn significant scientific interest and is virtually absent from the literature. We have investigated male and female MHC-dependent choice in an invasive population of North American raccoons (Procyon lotor) in Germany. Both male and female raccoons rely on olfaction for individual recognition. Males have an unusually complex social system in which older individuals choose unrelated younger ones to form stable male coalitions that defend territories and a monopoly over females. We have confirmed that females perform MHC-disassortative mate choice and that this behaviour fosters genetic diversity of offspring. We have also observed that males build coalitions by choosing male partners depending on their MHC, but in an assortative manner. This is the first observation of antagonistic MHC-dependent behaviours among sexes. We show that this is the only combination of MHC-dependent partner choice that leads to outbreeding. In the case of introduced raccoons, such behaviours can act together to promote the invasive potential of the species by increasing its adaptive genetic divergence.


Assuntos
Variação Genética , Genética Populacional , Complexo Principal de Histocompatibilidade/genética , Preferência de Acasalamento Animal , Guaxinins/genética , Animais , Feminino , Alemanha , Espécies Introduzidas , Masculino , Repetições de Microssatélites , Modelos Genéticos , Filogenia , Análise de Sequência de DNA , Fatores Sexuais
18.
Mol Ecol ; 26(20): 5515-5527, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28782134

RESUMO

Although the significance of the gut microbiome for host health is well acknowledged, the impact of host traits and environmental factors on the interindividual variation of gut microbiomes of wildlife species is not well understood. Such information is essential; however, as changes in the composition of these microbial communities beyond the natural range might cause dysbiosis leading to increased susceptibility to infections. We examined the potential influence of sex, age, genetic relatedness, spatial tactics and the environment on the natural range of the gut microbiome diversity in free-ranging Namibian cheetahs (Acinonyx jubatus). We further explored the impact of an altered diet and frequent contact with roaming dogs and cats on the occurrence of potential bacterial pathogens by comparing free-ranging and captive individuals living under the same climatic conditions. Abundance patterns of particular bacterial genera differed between the sexes, and bacterial diversity and richness were higher in older (>3.5 years) than in younger individuals. In contrast, male spatial tactics, which probably influence host exposure to environmental bacteria, had no discernible effect on the gut microbiome. The profound resemblance of the gut microbiome of kin in contrast to nonkin suggests a predominant role of genetics in shaping bacterial community characteristics and functional similarities. We also detected various Operational Taxonomic Units (OTUs) assigned to potential pathogenic bacteria known to cause diseases in humans and wildlife species, such as Helicobacter spp., and Clostridium perfringens. Captive individuals did not differ in their microbial alpha diversity but exhibited higher abundances of OTUs related to potential pathogenic bacteria and shifts in disease-associated functional pathways. Our study emphasizes the need to integrate ecological, genetic and pathogenic aspects to improve our comprehension of the main drivers of natural variation and shifts in gut microbial communities possibly affecting host health. This knowledge is essential for in situ and ex situ conservation management.


Assuntos
Acinonyx/microbiologia , Bactérias/classificação , Microbioma Gastrointestinal , Animais , Animais Selvagens/microbiologia , Gatos , Cães , Feminino , Masculino , Namíbia , RNA Ribossômico 16S/genética
19.
Mol Ecol ; 26(17): 4551-4561, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28667769

RESUMO

Deciphering the genes involved in disease resistance is essential if we are to understand host-pathogen coevolutionary processes. The rabbit haemorrhagic disease virus (RHDV) was imported into Australia in 1995 as a biocontrol agent to manage one of the most successful and devastating invasive species, the European rabbit (Oryctolagus cuniculus). During the first outbreaks of the disease, RHDV caused mortality rates of up to 97%. Recently, however, increased genetic resistance to RHDV has been reported. Here, we have aimed to identify genomic differences between rabbits that survived a natural infection with RHDV and those that died in the field using a genomewide next-generation sequencing (NGS) approach. We detected 72 SNPs corresponding to 133 genes associated with survival of a RHD infection. Most of the identified genes have known functions in virus infections and replication, immune responses or apoptosis, or have previously been found to be regulated during RHD. Some of the genes identified in experimental studies, however, did not seem to play a role under natural selection regimes, highlighting the importance of field studies to complement the genomic background of wildlife diseases. Our study provides a set of candidate markers as a tool for the future scanning of wild rabbits for their resistance to RHDV. This is important both for wild rabbit populations in southern Europe where RHD is regarded as a serious problem decimating the prey of endangered predator species and for assessing the success of currently planned RHDV variant biocontrol releases in Australia.


Assuntos
Infecções por Caliciviridae/genética , Infecções por Caliciviridae/veterinária , Resistência à Doença/genética , Coelhos/genética , Animais , Animais Selvagens/genética , Animais Selvagens/virologia , Austrália , Agentes de Controle Biológico , Vírus da Doença Hemorrágica de Coelhos , Coelhos/virologia
20.
Immunogenetics ; 68(6-7): 429-437, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27225422

RESUMO

Strong spatiotemporal variation in population size often leads to reduced genetic diversity limiting the adaptive potential of individual populations. Key genes of adaptive variation are encoded by the immune genes of the major histocompatibility complex (MHC) playing an essential role in parasite resistance. How MHC variation persists in rodent populations that regularly experience population bottlenecks remains an important topic in evolutionary genetics. We analysed the consequences of strong population fluctuations on MHC class II DRB exon 2 diversity in two distant common vole (Microtus arvalis) populations in three consecutive years using a high-throughput sequencing approach. In 143 individuals, we detected 25 nucleotide alleles translating into 14 unique amino acid MHC alleles belonging to at least three loci. Thus, the overall allelic diversity and amino acid distance among the remaining MHC alleles, used as a surrogate for the range of pathogenic antigens that can be presented to T-cells, are still remarkably high. Both study populations did not show significant population differentiation between years, but significant differences were found between sites. We concluded that selection processes seem to be strong enough to maintain moderate levels of MHC diversity in our study populations outcompeting genetic drift, as the same MHC alleles were conserved between years. Differences in allele frequencies between populations might be the outcome of different local parasite pressures and/or genetic drift. Further understanding of how pathogens vary across space and time will be crucial to further elucidate the mechanisms maintaining MHC diversity in cyclic populations.


Assuntos
Arvicolinae/genética , Deriva Genética , Variação Genética/genética , Genética Populacional , Complexo Principal de Histocompatibilidade/genética , Seleção Genética/genética , Animais , Frequência do Gene , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa