Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(13)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36584386

RESUMO

We report on the spin-to-charge conversion (SCC) in Mo0.25W0.75Te2-x(MWT)/Y3Fe5O12(YIG) heterostructures at room temperature. The centimeter-scale amorphous MWT films are deposited on liquid-phase-epitaxial YIG by pulsed laser deposition technique. The significant SCC voltage is measured in the MWT layer with a sizable spin Hall angle of ∼0.021 by spin pumping experiments. The control experiments by inserting MgO or Ag layer between MWT and YIG show that the SCC is mainly attributed to the inverse spin Hall effect rather than the thermal or interfacial Rashba effect. Our work provides a novel spin-source material for energy-efficient topological spintronic devices.

2.
Light Sci Appl ; 13(1): 181, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090099

RESUMO

Coherent phonons have aroused considerable attention in condensed matter physics owing to their extraordinary capacity of reflecting and controlling the physical properties of matter. However, the investigation on the interaction between coherent phonons and other microscopic particles on the ultrafast timescale within topological systems continues to be an active and unresolved area. Here, we show the energy transfer of coherent optical phonons (COP) in Dirac semimetal PtTe2 thin films using ultrafast optical pump-probe spectroscopy. Specifically, the helicity-dependent light-driven anisotropic COP signals disclose their direct connection with the light-excited anisotropic spin-polarized electrons via an angular momentum transfer. Furthermore, we observe the notable decreases in the COP oscillation frequency and the decay rate with increasing temperatures due to the anharmonic phonon-phonon scattering and electron-phonon scattering in the COP dissipation process, respectively. Our work paves the way for uncovering the coherent phonons in Dirac semimetals for the potential applications in optoelectronics and opto-spintronics.

3.
Nat Commun ; 15(1): 2992, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582768

RESUMO

Nonlinear transport is a unique functionality of noncentrosymmetric systems, which reflects profound physics, such as spin-orbit interaction, superconductivity and band geometry. However, it remains highly challenging to enhance the nonreciprocal transport for promising rectification devices. Here, we observe a light-induced giant enhancement of nonreciprocal transport at the superconducting and epitaxial CaZrO3/KTaO3 (111) interfaces. The nonreciprocal transport coefficient undergoes a giant increase with three orders of magnitude up to 105 A-1 T-1. Furthermore, a strong Rashba spin-orbit coupling effective field of 14.7 T is achieved with abundant high-mobility photocarriers under ultraviolet illumination, which accounts for the giant enhancement of nonreciprocal transport coefficient. Our first-principles calculations further disclose the stronger Rashba spin-orbit coupling strength and the longer relaxation time in the photocarrier excitation process, bridging the light-property quantitative relationship. Our work provides an alternative pathway to boost nonreciprocal transport in noncentrosymmetric systems and facilitates the promising applications in opto-rectification devices and spin-orbitronic devices.

4.
Nanoscale Res Lett ; 17(1): 74, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35969318

RESUMO

Achieving high-efficient spin injection in semiconductors is critical for developing spintronic devices. Although a tunnel spin injector is typically used, the construction of a high-quality tunnel barrier remains a significant challenge due to the large lattice mismatch between oxides and semiconductors. In this work, van der Waals h-BN films with the atomically flat interface were engaged as the tunnel barrier to achieve high spin polarization in GaN, and the spin injection and transport in GaN were investigated systematically. Based on the Hanle precession and magnetic resistance measurements, CoFeB was determined as an optimal spin polarizer, bilayer h-BN tunnelling barrier was proven to yield a much higher spin polarization than the case of monolayer, and appropriate carrier concentration as well as higher crystal equality of n-GaN could effectively reduce the defect-induced spin scattering to improve the spin transport. The systematic understanding and the high efficiency of spin injection in this work may pave the way to the development of physical connotations and the applications of semiconductor spintronics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa