Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(17): 8272-8279, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37643420

RESUMO

Phase transformation─a universal phenomenon in materials─plays a key role in determining their properties. Resolving complex phase domains in materials is critical to fostering a new fundamental understanding that facilitates new material development. So far, although conventional classification strategies such as order-parameter methods have been developed to distinguish remarkably disparate phases, highly accurate and efficient phase segmentation for material systems composed of multiphases remains unavailable. Here, by coupling hard-attention-enhanced U-Net network and geometry simulation with atomic-resolution transmission electron microscopy, we successfully developed a deep-learning tool enabling automated atom-by-atom phase segmentation of intertwined phase domains in technologically important cathode materials for lithium-ion batteries. The new strategy outperforms traditional methods and quantitatively elucidates the correlation between the multiple phases formed during battery operation. Our work demonstrates how deep learning can be employed to foster an in-depth understanding of phase transformation-related key issues in complex materials.

2.
Chem Soc Rev ; 46(10): 3006-3059, 2017 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-28440379

RESUMO

The ever-growing demand for advanced rechargeable lithium-ion batteries in portable electronics and electric vehicles has spurred intensive research efforts over the past decade. The key to sustaining the progress in Li-ion batteries lies in the quest for safe, low-cost positive electrode (cathode) materials with desirable energy and power capabilities. One approach to boost the energy and power densities of batteries is to increase the output voltage while maintaining a high capacity, fast charge-discharge rate, and long service life. This review gives an account of the various emerging high-voltage positive electrode materials that have the potential to satisfy these requirements either in the short or long term, including nickel-rich layered oxides, lithium-rich layered oxides, high-voltage spinel oxides, and high-voltage polyanionic compounds. The key barriers and the corresponding strategies for the practical viability of these cathode materials are discussed along with the optimization of electrolytes and other cell components, with a particular emphasis on recent advances in the literature. A concise perspective with respect to plausible strategies for future developments in the field is also provided.

3.
Phys Chem Chem Phys ; 18(6): 4745-52, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26799191

RESUMO

In operando synchrotron X-ray powder diffraction (SXPD) studies were conducted to investigate the phase transition of Li-rich Li(Li0.2Ni0.13Mn0.54Co0.13)O2 and Cr-doped Li(Li0.2Ni0.13Mn0.54Co0.03Cr0.10)O2 cathodes during the first charge/discharge cycle. Crystallographic (lattice parameters) and mechanical (domain size and microstrain) information was collected from SXPD full pattern refinement. It was found that Cr substitution at Co-site benefits in suppressing the activation of Li2MnO3 domains upon 1st charge, and thus mitigates the phase transition. As a consequence, Cr-doped layered cathode holds a better reversibility in terms of a full recovery of both lattice parameters and nano-domain size after a whole charge/discharge cycle. The effects of different cycling rates on the structural change were also discussed.

4.
Phys Chem Chem Phys ; 17(15): 10257-64, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25798700

RESUMO

As a crucial building block of the electrode in the lithium-ion battery (LIB), single nanoparticles that respond to an electric field have rarely been characterized experimentally. It is important to study the intrinsic properties of nanoparticles independently, excluding the effects from binders and additives. In this paper, isolated Li-rich layer-oxide (Li1.2Mn0.54Ni0.13Co0.13O2) nanoparticles are studied in comparison with individual Li2MnO3 and LiNi1/3Co1/3Mn1/3O2 nanoparticles. The bias triggered changes in morphology and material properties are characterized using dual-frequency scanning probe microscopy (SPM) techniques in ambient air, synthetic air, and an argon atmosphere. Inhomogeneous stiffness/composition is observed on single nanoparticles. The change in local Li(+)-ion concentration may contribute to the stiffness variation. Bias induced Li(+)-ion redistributions and electrochemical reactions are observed. Nanoparticles are fragmented at high voltage (>5 V) when an excessive amount of Li-ions are removed. This work further demonstrates the application of multi-frequency SPM techniques for the characterization of nanoparticles for energy storage applications.

5.
Small ; 10(8): 1536-43, 2014 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-24376114

RESUMO

A novel composite consisting of graphene-like MoS2 nanosheets and ultrasmall Fe3O4 nanoparticles (≈3.5 nm) is synthesized as an anode for lithium ion battery application. In such composite anode, MoS2 nanosheets provide flexible substrates for the nanoparticle decoration, accommodating the volume changes of Fe3O4 during cycling process; while Fe3O4 nanoparticles primarily act as spacers to stabilize the composite structure, making the active surfaces of MoS2 nanosheets accessible for electrolyte penetration during charge/discharge processes. Owing to the high reversible capacity provided by the MoS2 nanosheets and the superior high rate performance offered by ultrasmall Fe3O4 nanoparticles, superior cyclic and rate performances are achieved by FeFe3O4/MoS2 anode during the subsequent electrochemical tests, delivering 1033 and 224 mAh g⁻¹ at current densities of 2000 and 10,000 mA g⁻¹, respectively.

6.
Nat Commun ; 14(1): 7665, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996427

RESUMO

Reversible lattice oxygen redox reactions offer the potential to enhance energy density and lower battery cathode costs. However, their widespread adoption faces obstacles like substantial voltage hysteresis and poor stability. The current research addresses these challenges by achieving a non-hysteresis, long-term stable oxygen redox reaction in the P3-type Na2/3Cu1/3Mn2/3O2. Here we show this is accomplished by forming spin singlet states during charge and discharge. Detailed analysis, including in-situ X-ray diffraction, shows highly reversible structural changes during cycling. In addition, local CuO6 Jahn-Teller distortions persist throughout, with dynamic Cu-O bond length variations. In-situ hard X-ray absorption and ex-situ soft X-ray absorption study, along with density function theory calculations, reveal two distinct charge compensation mechanisms at approximately 3.66 V and 3.99 V plateaus. Notably, we observe a Zhang-Rice-like singlet state during 3.99 V charging, offering an alternative charge compensation mechanism to stabilize the active oxygen redox reaction.

7.
Phys Chem Chem Phys ; 14(37): 12875-83, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22892557

RESUMO

High capacity Li-rich layered cathode Li(Li(0.2)Mn(0.54)Ni(0.13)Co(0.13))O(2) and doped one are investigated to understand mechanisms of capacity fade as well as voltage decrease upon long-term cycling. Detailed electrochemical analysis reveals a phase-separation-like behavior with increase in the cycle number, which is responsible for gradual reduction in discharge voltage. X-ray photoelectron spectroscopy (XPS), transmission electron microscope coupled with energy dispersive X-ray spectroscopy (TEM-EDS) and inductively coupled plasma emission spectrometry (ICP) analysis results show increase in valence of transition metals on the surface of powder at a fully discharged state in addition to surface dissolution of Ni, leading to rapid capacity loss. High resolution transmission electron microscopy (HR-TEM) shows a phase transformation from original layered structure into spinel-like nano-domains in local structure. Though such an unexpected structural change is unfavorable because of lower output voltage, it is observed to be beneficial for high-rate performance.

8.
Adv Sci (Weinh) ; 8(21): e2102318, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34494394

RESUMO

Fast charging (<15 min) of lithium-ion batteries (LIBs) for electrical vehicles (EVs) is widely seen as the key factor that will greatly stimulate the EV markets, and its realization is mainly hindered by the sluggish diffusion of Li+ . To have a mechanistic understanding of Li+ diffusion within LIBs, in this study, structural evolutions of electrodes for a Ni-rich LiNi0.6 Mn0.2 Co0.2 O2 (NMC622) || graphite cylindrical cell with high areal loading (2.78 mAh cm-2 ) are developed for operando neutron powder diffraction study at different charging rates. Via sequential Rietveld refinements, changes in structures of NMC622 and Lix C6 are obtained during moderate and fast charging (from 0.27 C to 4.4 C). NMC622 exhibits the same structural evolution regardless of C-rates. For phase transitions of Lix C6 , the stage I (LiC6 ) phase emerges earlier during the stepwise intercalation at a lower state of charge when charging rate is increased. It is also found that the stage II (LiC12 ) → stage I (LiC6 ) transition is the rate-limiting step during fast charging. The LiC12 → LiC6 transition mechanism is further analyzed using the Johnson-Mehl-Avrami-Kolmogorov model. It is concluded as a diffusion-controlled, 1D phase transition with decreasing nucleation kinetics under increasing chargingrates.

9.
ACS Appl Mater Interfaces ; 9(11): 9718-9725, 2017 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-28248082

RESUMO

As nickel-rich layered oxide cathodes start to attract worldwide interest for the next-generation lithium-ion batteries, their long-term cyclability in full cells remains a challenge for electric vehicles. Here we report a long-life Ni-rich layered oxide cathode (LiNi0.7Co0.15Mn0.15O2) with a uniform surface coating of the cathode particles with Li2ZrO3. A pouch-type full cell fabricated with the Li2ZrO3-coated cathode and a graphite anode displays 73.3% capacity retention after 1500 cycles at a C/3 rate. The Li2ZrO3 coating has been optimized by a systematic study with different synthesis approaches, annealing temperatures, and coating amounts. The complex relationship among the coating conditions, uniformity, and morphology of the coating layer and their impacts on the electrochemical properties are discussed in detail.

10.
Sci Rep ; 3: 3332, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24276678

RESUMO

Li-rich layer-structured cathode thin films are prepared by pulsed laser deposition. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), X-ray photoelectron spectroscopy (XPS) and electrochemical testing in half battery cells are used to characterize crystal structure, surface morphology, chemical valence states and electrochemical performance of these thin films, respectively. It is observed that partial layer to spinel transformation takes place during post annealing, and the layered structure further gradually transforms to spinel during electrochemical cycling based on the analysis of dQ/dV. Electrochemical measurement shows that the thin film electrode deposited at 350 mTorr and post-annealed at 800 °C possesses the best performance.

11.
Nanoscale ; 5(15): 6797-803, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23765405

RESUMO

Advanced anode materials for next generation lithium ion batteries have attracted great interest due to the ever increasing demand for powerful, light-weight, and compact electrical devices. In this work, graphene nanosheets decorated with ultra-small Fe3O4 nanoparticles (USIO/G) were synthesized via a facile hydrothermal method. Compared with other reported Fe3O4-based anode composites, USIO/G demonstrated superior cyclic ability and excellent rate capability owing to its ultra-small size of active lithium storage sites, Fe3O4, with an average diameter less than 5 nm. Furthermore, graphene nanosheets played an important role in the overall electrochemical performance of the composite by enhancing the electrical conductivity, forming a flexible network, and providing extra lithium storage sites. The obtained composites were tested for electrochemical performance for a total number of 2120 cycles: a rate capability test with current densities ranged from 90 to 7200 mA g(-1) for 920 cycles, followed by a cycling test at 1800 mA g(-1) for 1200 cycles. For the rate capability test, steady reversible capacities were delivered under each current density with final reversible capacities of 1177, 1096, 833, 488, 242, and 146 mA h g(-1) at 90, 180, 900, 1800, 3600, and 7200 mA g(-1), respectively. The subsequent cyclic test demonstrated the superior cyclic stability of USIO/G and a reversible capacity of 437 mA h g(-1) at the 2120(th) cycle was delivered.

12.
Sci Rep ; 3: 3094, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24172795

RESUMO

Modified Li-rich layered cathode Li(Li0.2Mn0.54Ni0.13Co0.13)O2 has been synthesized by a simple strategy of using surface treatment with various amounts (0-30 wt.%) of Super P (carbon black). Based on detailed characterizations from X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), X-ray photoelectron spectroscopy (XPS) and electrochemical impedance spectroscopy (EIS), it is suggested that the phase transformation from Li2MnO3-type of structure to spinel-like phase take place at the surface regions of particles during post annealing process at 350 °C, leading to increase in both first coulombic efficiency and rate capability, from 78% and 100 mAh · g(-1) (charge capacity at 2500 mA · g(-1)) of the pristine material to 93.4% and 200 mAh · g(-1). The evidences of spinel formation and the reasons for electrochemical enhancement are systematically investigated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa