Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Annu Rev Biochem ; 83: 585-614, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24905787

RESUMO

The importance of eukaryotic DNA methylation [5-methylcytosine (5mC)] in transcriptional regulation and development was first suggested almost 40 years ago. However, the molecular mechanism underlying the dynamic nature of this epigenetic mark was not understood until recently, following the discovery that the TET proteins, a family of AlkB-like Fe(II)/α-ketoglutarate-dependent dioxygenases, can oxidize 5mC to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Since then, several mechanisms that are responsible for processing oxidized 5mC derivatives to achieve DNA demethylation have emerged. Our biochemical understanding of the DNA demethylation process has prompted new investigations into the biological functions of DNA demethylation. Characterization of two additional AlkB family proteins, FTO and ALKBH5, showed that they possess demethylase activity toward N(6)-methyladenosine (m(6)A) in RNA, indicating that members of this subfamily of dioxygenases have a general function in demethylating nucleic acids. In this review, we discuss recent advances in this emerging field, focusing on the mechanism and function of TET-mediated DNA demethylation.


Assuntos
Metilação de DNA , DNA/química , Regulação da Expressão Gênica , Oxigênio/química , RNA/química , 5-Metilcitosina/química , Animais , Citosina/análogos & derivados , Citosina/química , Escherichia coli/metabolismo , Genoma , Células Germinativas/citologia , Células HEK293 , Humanos , Metilação , Camundongos , Neoplasias/genética , Células-Tronco/citologia , Transcriptoma
2.
Cell ; 153(3): 678-91, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23602153

RESUMO

TET proteins oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). 5fC and 5caC are excised by mammalian DNA glycosylase TDG, implicating 5mC oxidation in DNA demethylation. Here, we show that the genomic locations of 5fC can be determined by coupling chemical reduction with biotin tagging. Genome-wide mapping of 5fC in mouse embryonic stem cells (mESCs) reveals that 5fC preferentially occurs at poised enhancers among other gene regulatory elements. Application to Tdg null mESCs further suggests that 5fC production coordinates with p300 in remodeling epigenetic states of enhancers. This process, which is not influenced by 5hmC, appears to be associated with further oxidation of 5hmC and commitment to demethylation through 5fC. Finally, we resolved 5fC at base resolution by hydroxylamine-based protection from bisulfite-mediated deamination, thereby confirming sites of 5fC accumulation. Our results reveal roles of active 5mC/5hmC oxidation and TDG-mediated demethylation in epigenetic tuning at regulatory elements.


Assuntos
Citosina/análogos & derivados , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Técnicas Genéticas , Estudo de Associação Genômica Ampla , 5-Metilcitosina/metabolismo , Animais , Citosina/metabolismo , Camundongos , Elementos Reguladores de Transcrição , Fatores de Transcrição de p300-CBP/metabolismo
3.
Cell ; 149(6): 1368-80, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22608086

RESUMO

The study of 5-hydroxylmethylcytosines (5hmC) has been hampered by the lack of a method to map it at single-base resolution on a genome-wide scale. Affinity purification-based methods cannot precisely locate 5hmC nor accurately determine its relative abundance at each modified site. We here present a genome-wide approach, Tet-assisted bisulfite sequencing (TAB-Seq), that when combined with traditional bisulfite sequencing can be used for mapping 5hmC at base resolution and quantifying the relative abundance of 5hmC as well as 5mC. Application of this method to embryonic stem cells not only confirms widespread distribution of 5hmC in the mammalian genome but also reveals sequence bias and strand asymmetry at 5hmC sites. We observe high levels of 5hmC and reciprocally low levels of 5mC near but not on transcription factor-binding sites. Additionally, the relative abundance of 5hmC varies significantly among distinct functional sequence elements, suggesting different mechanisms for 5hmC deposition and maintenance.


Assuntos
Citosina/análogos & derivados , Estudo de Associação Genômica Ampla , Análise de Sequência de DNA/métodos , 5-Metilcitosina/análise , Animais , Citosina/análise , Células-Tronco Embrionárias/metabolismo , Epigenômica , Regulação da Expressão Gênica , Genoma Humano , Humanos , Camundongos
4.
Nucleic Acids Res ; 50(18): e104, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-35849350

RESUMO

Long-read sequencing provides valuable information on difficult-to-map genomic regions, which can complement short-read sequencing to improve genome assembly, yet limited methods are available to accurately detect DNA methylation over long distances at a whole-genome scale. By combining our recently developed TET-assisted pyridine borane sequencing (TAPS) method, which enables direct detection of 5-methylcytosine and 5-hydroxymethylcytosine, with PacBio single-molecule real-time sequencing, we present here whole-genome long-read TAPS (wglrTAPS). To evaluate the performance of wglrTAPS, we applied it to mouse embryonic stem cells as a proof of concept, and an N50 read length of 3.5 kb is achieved. By sequencing wglrTAPS to 8.2× depth, we discovered a significant proportion of CpG sites that were not covered in previous 27.5× short-read TAPS. Our results demonstrate that wglrTAPS facilitates methylation profiling on problematic genomic regions with repetitive elements or structural variations, and also in an allelic manner, all of which are extremely difficult for short-read sequencing methods to resolve. This method therefore enhances applications of third-generation sequencing technologies for DNA epigenetics.


Assuntos
5-Metilcitosina , Metilação de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Animais , Compostos de Boro , DNA/genética , Camundongos , Piridinas
5.
J Am Chem Soc ; 145(13): 7095-7100, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36961225

RESUMO

Selective, efficient, and controllable oxidation of cytosine modifications is valuable for epigenetic analyses, yet only limited progress has been made. Here, we present two modular chemical oxidation reactions: conversion of 5-hydroxymethylcytosine (5hmC) into 5-formylcytosine (5fC) using 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxoammonium tetrafluoroborate (ACT+BF4-) and further transformation of 5fC into 5-carboxycytosine (5caC) through Pinnick oxidation. Both reactions are mild and efficient on double-stranded DNA. We integrated these two oxidations with borane reduction to develop chemical-assisted pyridine borane sequencing plus (CAPS+), for direct and quantitative mapping of 5hmC. Compared with CAPS, CAPS+ improved the conversion rate and false-positive rate. We applied CAPS+ to mouse embryonic stem cells, human normal brain, and glioblastoma DNA samples and demonstrated its superior sensitivity in analyzing the hydroxymethylome.


Assuntos
Cistina , Cistina/análise , Humanos , Animais , Camundongos , Metilação de DNA , DNA/genética , Oxirredução
6.
Nucleic Acids Res ; 49(13): e76, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33905495

RESUMO

Whole genome base-resolution methylome sequencing allows for the most comprehensive analysis of DNA methylation, however, the considerable sequencing cost often limits its applications. While reduced representation sequencing can be an affordable alternative, over 80% of CpGs in the genome are not covered. Building on our recently developed TET-assisted pyridine borane sequencing (TAPS) method, we here described endonuclease enrichment TAPS (eeTAPS), which utilizes dihydrouracil (DHU)-cleaving endonuclease digestion of TAPS-converted DNA to enrich methylated CpG sites (mCpGs). eeTAPS can accurately detect 87% of mCpGs in the mouse genome with a sequencing depth equivalent to 4× whole genome sequencing. In comparison, reduced representation TAPS (rrTAPS) detected less than 4% of mCpGs with 2.5× sequencing depth. Our results demonstrate eeTAPS to be a new strategy for cost-effective genome-wide methylation analysis at single-CpG resolution that can fill the gap between whole-genome and reduced representation sequencing.


Assuntos
Metilação de DNA , Análise de Sequência de DNA/métodos , Animais , Células Cultivadas , Análise Custo-Benefício , Ilhas de CpG , Desoxirribonuclease (Dímero de Pirimidina) , Células-Tronco Embrionárias/metabolismo , Genômica/métodos , Camundongos , Análise de Sequência de DNA/economia , Uracila-DNA Glicosidase
7.
Mol Cell ; 56(2): 286-297, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25263596

RESUMO

In mammals, cytosine methylation (5mC) is widely distributed throughout the genome but is notably depleted from active promoters and enhancers. While the role of DNA methylation in promoter silencing has been well documented, the function of this epigenetic mark at enhancers remains unclear. Recent experiments have demonstrated that enhancers are enriched for 5-hydroxymethylcytosine (5hmC), an oxidization product of the Tet family of 5mC dioxygenases and an intermediate of DNA demethylation. These results support the involvement of Tet proteins in the regulation of dynamic DNA methylation at enhancers. By mapping DNA methylation and hydroxymethylation at base resolution, we find that deletion of Tet2 causes extensive loss of 5hmC at enhancers, accompanied by enhancer hypermethylation, reduction of enhancer activity, and delayed gene induction in the early steps of differentiation. Our results reveal that DNA demethylation modulates enhancer activity, and its disruption influences the timing of transcriptome reprogramming during cellular differentiation.


Assuntos
Diferenciação Celular/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Proteínas Proto-Oncogênicas/metabolismo , 5-Metilcitosina/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Citosina/análogos & derivados , Citosina/metabolismo , Proteínas de Ligação a DNA/genética , Dioxigenases , Camundongos , Camundongos Knockout , Oxirredução , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/genética , Análise de Sequência de DNA , Transcriptoma/genética , Dedos de Zinco/genética
8.
Med Sci Monit ; 27: e929111, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33727522

RESUMO

BACKGROUND The aim of the present study was to evaluate the effects of different doses of oxycodone during endoscopic injection sclerotherapy (EIS) for esophageal varices with painless sclerosing agents. MATERIAL AND METHODS A total of 119 patients were randomly divided into 3 groups: Group A, midazolam and 0.075 mg/kg oxycodone (n=40); Group B, midazolam and 0.1 mg/kg oxycodone (n=40); and Group C, midazolam and 0.125 mg/kg oxycodone (n=39). The main observation index was the incidence of body movement during the perioperative period. The secondary indices were additional propofol usage; postoperative analgesic usage; other adverse effects, such as hypoxia, myoclonus, and cough; and satisfaction scores for surgeons and patients. RESULTS The incidence rates for body movement during the perioperative period in groups A, B, and C were 33%, 13%, and 0, respectively (P<0.001). The satisfaction scores for surgeons and patients were highest in Group C (0.125 mg/kg oxycodone). The incidence rates for hypoxia before EIS were 15%, 8%, and 33% (P=0.026) and during EIS were 23%, 3%, and 0% (P<0.001), respectively. There were no significant between-group differences with respect to other adverse effects. CONCLUSIONS The ideal dose of oxycodone for perioperative analgesia during EIS for esophageal varices is 0.125 mg/kg.


Assuntos
Varizes Esofágicas e Gástricas/tratamento farmacológico , Oxicodona/farmacologia , Escleroterapia/métodos , Adulto , China , Relação Dose-Resposta a Droga , Endoscopia/efeitos adversos , Varizes Esofágicas e Gástricas/metabolismo , Feminino , Hemorragia Gastrointestinal/etiologia , Humanos , Incidência , Injeções/efeitos adversos , Cirrose Hepática/complicações , Masculino , Midazolam/farmacologia , Pessoa de Meia-Idade , Oxicodona/uso terapêutico , Período Perioperatório , Estudos Prospectivos , Soluções Esclerosantes/administração & dosagem , Soluções Esclerosantes/efeitos adversos , Escleroterapia/efeitos adversos
9.
Haematologica ; 105(1): 148-160, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30975912

RESUMO

Homoharringtonine, a plant alkaloid, has been reported to suppress protein synthesis and has been approved by the US Food and Drug Administration for the treatment of chronic myeloid leukemia. Here we show that in acute myeloid leukemia (AML), homoharringtonine potently inhibits cell growth/viability and induces cell cycle arrest and apoptosis, significantly inhibits disease progression in vivo, and substantially prolongs survival of mice bearing murine or human AML. Strikingly, homoharringtonine treatment dramatically decreases global DNA 5-hydroxymethylcytosine abundance through targeting the SP1/TET1 axis, and TET1 depletion mimics homoharringtonine's therapeutic effects in AML. Our further 5hmC-seq and RNA-seq analyses, followed by a series of validation and functional studies, suggest that FLT3 is a critical down-stream target of homoharringtonine/SP1/TET1/5hmC signaling, and suppression of FLT3 and its downstream targets (e.g. MYC) contributes to the high sensitivity of FLT3-mutated AML cells to homoharringtonine. Collectively, our studies uncover a previously unappreciated DNA epigenome-related mechanism underlying the potent antileukemic effect of homoharringtonine, which involves suppression of the SP1/TET1/5hmC/FLT3/MYC signaling pathways in AML. Our work also highlights the particular promise of clinical application of homoharringtonine to treat human AML with FLT3 mutations, which accounts for more than 30% of total cases of AML.


Assuntos
Epigenoma , Leucemia Mieloide Aguda , Animais , Linhagem Celular Tumoral , DNA , Proteínas de Ligação a DNA , Mepesuccinato de Omacetaxina , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Proteínas Proto-Oncogênicas/genética , Tirosina Quinase 3 Semelhante a fms
10.
Bioessays ; 39(5)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28332209

RESUMO

We here review primary methods used in quantifying and mapping 5-hydroxymethylcytosine (5hmC), including global quantification, restriction enzyme-based detection, and methods involving DNA-enrichment strategies and the genome-wide sequencing of 5hmC. As discovered in the mammalian genome in 2009, 5hmC, oxidized from 5-methylcytosine (5mC) by ten-eleven translocation (TET) dioxygenases, is increasingly being recognized as a biomarker in biological processes from development to pathogenesis, as its various detection methods have shown. We focus in particular on an ultrasensitive single-molecule imaging technique that can detect and quantify 5hmC from trace samples and thus offer information regarding the distance-based relationship between 5hmC and 5mC when used in combination with fluorescence resonance energy transfer.


Assuntos
5-Metilcitosina/análogos & derivados , Epigênese Genética , 5-Metilcitosina/análise , 5-Metilcitosina/imunologia , 5-Metilcitosina/metabolismo , Animais , Especificidade de Anticorpos , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Mapeamento Cromossômico , DNA/química , DNA/genética , Enzimas de Restrição do DNA , Transferência Ressonante de Energia de Fluorescência , Marcadores Genéticos , Glicosilação , Humanos , Espectrometria de Massas , Análise de Sequência de DNA , Imagem Individual de Molécula/métodos
11.
Proc Natl Acad Sci U S A ; 113(16): 4338-43, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27035984

RESUMO

The modifications 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are the two major DNA epigenetic modifications in mammalian genomes and play crucial roles in development and pathogenesis. Little is known about the colocalization or potential correlation of these two modifications. Here we present an ultrasensitive single-molecule imaging technology capable of detecting and quantifying 5hmC and 5mC from trace amounts of DNA. We used this approach to perform single-molecule fluorescence resonance energy transfer (smFRET) experiments which measure the proximity between 5mC and 5hmC in the same DNA molecule. Our results reveal high levels of adjacent and opposing methylated and hydroxymethylated CpG sites (5hmC/5mCpGs) in mouse genomic DNA across multiple tissues. This identifies the previously undetectable and unappreciated 5hmC/5mCpGs as one of the major states for 5hmC in the mammalian genome and suggest that they could function in promoting gene expression.


Assuntos
5-Metilcitosina/metabolismo , Citosina/análogos & derivados , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Imagem Molecular , Animais , Citosina/metabolismo , Camundongos
12.
Nucleic Acids Res ; 44(17): 8153-64, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27257062

RESUMO

Forkhead box A1 (FOXA1) is an FKHD family protein that plays pioneering roles in lineage-specific enhancer activation and gene transcription. Through genome-wide location analyses, here we show that FOXA1 expression and occupancy are, in turn, required for the maintenance of these epigenetic signatures, namely DNA hypomethylation and histone 3 lysine 4 methylation. Mechanistically, this involves TET1, a 5-methylcytosine dioxygenase. We found that FOXA1 induces TET1 expression via direct binding to its cis-regulatory elements. Further, FOXA1 physically interacts with the TET1 protein through its CXXC domain. TET1 thus co-occupies FOXA1-dependent enhancers and mediates local DNA demethylation and concomitant histone 3 lysine 4 methylation, further potentiating FOXA1 recruitment. Consequently, FOXA1 binding events are markedly reduced following TET1 depletion. Together, our results suggest that FOXA1 is not only able to recognize but also remodel the epigenetic signatures at lineage-specific enhancers, which is mediated, at least in part, by a feed-forward regulatory loop between FOXA1 and TET1.


Assuntos
Linhagem da Célula/genética , Elementos Facilitadores Genéticos , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Oxigenases de Função Mista/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , Epigênese Genética , Células HEK293 , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Oxigenases de Função Mista/genética , Modelos Biológicos , Ligação Proteica/genética , Proteínas Proto-Oncogênicas/genética , Transcrição Gênica
13.
Trends Biochem Sci ; 38(10): 480-4, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23932479

RESUMO

DNA methylation in the form of 5-methylcytosine (5mC) is a key epigenetic regulator in mammals, and the dynamic balance between methylation and demethylation impacts various processes from development to disease. The recent discovery of the enzymatic generation and removal of the oxidized derivatives of 5mC, namely 5-hydroxymethylcysotine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) in mammalian cells has led to a paradigm shift in our understanding of the demethylation process. Interestingly, emerging evidence indicates that these DNA demethylation intermediates are dynamic and could themselves carry regulatory functions. Here, we discuss 5hmC, 5fC, and 5caC as new epigenetic DNA modifications that could have distinct regulatory functions in conjunction with potential protein partners.


Assuntos
5-Metilcitosina/metabolismo , Metilação de DNA , DNA/metabolismo , DNA/genética
14.
Clin Chem ; 63(11): 1695-1704, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28904056

RESUMO

BACKGROUND: Plasma cell-free RNA (cfRNA) encompasses a broad spectrum of RNA species that can be derived from both human cells and microbes. Because cfRNA is fragmented and of low concentration, it has been challenging to profile its transcriptome using standard RNA-seq methods. METHODS: We assessed several recently developed RNA-seq methods on cfRNA samples. We then analyzed the dynamic changes of both the human transcriptome and the microbiome of plasma during pregnancy from 60 women. RESULTS: cfRNA reflects a well-orchestrated immune modulation during pregnancy: an up-regulation of antiinflammatory genes and an increased abundance of antimicrobial genes. We observed that the plasma microbiome remained relatively stable during pregnancy. The bacteria Ureaplasma shows an increased prevalence and increased abundance at postpartum, which is likely to be associated with postpartum infection. We demonstrated that cfRNA-seq can be used to monitor viral infections. We detected a number of human pathogens in our patients, including an undiagnosed patient with a high load of human parvovirus B19 virus (B19V), which is known to be a potential cause of complications in pregnancy. CONCLUSIONS: Plasma cfRNA-seq demonstrates the potential to simultaneously monitor immune response and microbial infections during pregnancy.


Assuntos
Infecções/imunologia , Complicações Infecciosas na Gravidez/imunologia , RNA/sangue , Adulto , Feminino , Humanos , Infecções/complicações , Microbiota , Gravidez , RNA/genética , Análise de Sequência de RNA , Transcriptoma
15.
Genome Res ; 23(2): 352-64, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23033340

RESUMO

Spatial organization of different epigenomic marks was used to infer functions of the epigenome. It remains unclear what can be learned from the temporal changes of the epigenome. Here, we developed a probabilistic model to cluster genomic sequences based on the similarity of temporal changes of multiple epigenomic marks during a cellular differentiation process. We differentiated mouse embryonic stem (ES) cells into mesendoderm cells. At three time points during this differentiation process, we used high-throughput sequencing to measure seven histone modifications and variants--H3K4me1/2/3, H3K27ac, H3K27me3, H3K36me3, and H2A.Z; two DNA modifications--5-mC and 5-hmC; and transcribed mRNAs and noncoding RNAs (ncRNAs). Genomic sequences were clustered based on the spatiotemporal epigenomic information. These clusters not only clearly distinguished gene bodies, promoters, and enhancers, but also were predictive of bidirectional promoters, miRNA promoters, and piRNAs. This suggests specific epigenomic patterns exist on piRNA genes much earlier than germ cell development. Temporal changes of H3K4me2, unmethylated CpG, and H2A.Z were predictive of 5-hmC changes, suggesting unmethylated CpG and H3K4me2 as potential upstream signals guiding TETs to specific sequences. Several rules on combinatorial epigenomic changes and their effects on mRNA expression and ncRNA expression were derived, including a simple rule governing the relationship between 5-hmC and gene expression levels. A Sox17 enhancer containing a FOXA2 binding site and a Foxa2 enhancer containing a SOX17 binding site were identified, suggesting a positive feedback loop between the two mesendoderm transcription factors. These data illustrate the power of using epigenome dynamics to investigate regulatory functions.


Assuntos
Análise por Conglomerados , Epigênese Genética , Epigenômica , Regulação da Expressão Gênica , Modelos Moleculares , Animais , Diferenciação Celular/genética , Metilação de DNA , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Genoma , Histonas/química , Histonas/metabolismo , Camundongos , Regiões Promotoras Genéticas , Transcrição Gênica , Transcriptoma
16.
Methods ; 72: 16-20, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25462560

RESUMO

How DNA demethylation is achieved in mammals is still under extensive investigation. One proposed mechanism is deamination of 5-hydroxymethylcytosine to form 5-hydroxymethyluracil (5hmU), followed by base excision repair to replace the mismatched 5hmU with cytosine. In this process, 5hmU:G mispair serves as a key intermediate and its localization and distribution in mammalian genome could be important information to investigate the proposed pathway. Here we describe a selective labeling method to map mismatched 5hmU. After converting other cytosine modifications to 5-carboxylcytosines, a biotin tag is installed onto mismatched 5hmU through ß-glucosyltransferase-catalyzed glucosylation and click chemistry. The enriched 5hmU-containing DNA fragments can be subject to subsequent sequencing to reveal the distribution of 5hmU:G mispair with base-resolution information acquired.


Assuntos
Metilação de DNA , DNA/química , Epigenômica/métodos , Mamíferos/genética , Pentoxil (Uracila)/análogos & derivados , Animais , Desaminação , Modelos Biológicos , Pentoxil (Uracila)/química
17.
Proc Natl Acad Sci U S A ; 110(24): 9920-5, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716660

RESUMO

The ten-eleven translocation (TET) family of methylcytosine dioxygenases initiates demethylation of DNA and is associated with tumorigenesis in many cancers; however, the mechanism is mostly unknown. Here we identify upstream activators and downstream effectors of TET1 in breast cancer using human breast cancer cells and a genetically engineered mouse model. We show that depleting the architectural transcription factor high mobility group AT-hook 2 (HMGA2) induces TET1. TET1 binds and demethylates its own promoter and the promoter of homeobox A (HOXA) genes, enhancing its own expression and stimulating expression of HOXA genes including HOXA7 and HOXA9. Both TET1 and HOXA9 suppress breast tumor growth and metastasis in mouse xenografts. The genes comprising the HMGA2-TET1-HOXA9 pathway are coordinately regulated in breast cancer and together encompass a prognostic signature for patient survival. These results implicate the HMGA2-TET1-HOX signaling pathway in the epigenetic regulation of human breast cancer and highlight the importance of targeting methylation in specific subpopulations as a potential therapeutic strategy.


Assuntos
Neoplasias da Mama/genética , Proteínas de Ligação a DNA/genética , Proteína HMGA2/genética , Proteínas de Homeodomínio/genética , Proteínas Proto-Oncogênicas/genética , Transdução de Sinais/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Feminino , Perfilação da Expressão Gênica , Proteína HMGA2/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Immunoblotting , Estimativa de Kaplan-Meier , Masculino , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Oxigenases de Função Mista , Metástase Neoplásica , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Proteínas Proto-Oncogênicas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
18.
Proc Natl Acad Sci U S A ; 110(29): 11994-9, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818607

RESUMO

The ten-eleven translocation 1 (TET1) gene is the founding member of the TET family of enzymes (TET1/2/3) that convert 5-methylcytosine to 5-hydroxymethylcytosine. Although TET1 was first identified as a fusion partner of the mixed lineage leukemia (MLL) gene in acute myeloid leukemia carrying t(10,11), its definitive role in leukemia is unclear. In contrast to the frequent down-regulation (or loss-of-function mutations) and critical tumor-suppressor roles of the three TET genes observed in various types of cancers, here we show that TET1 is a direct target of MLL-fusion proteins and is significantly up-regulated in MLL-rearranged leukemia, leading to a global increase of 5-hydroxymethylcytosine level. Furthermore, our both in vitro and in vivo functional studies demonstrate that Tet1 plays an indispensable oncogenic role in the development of MLL-rearranged leukemia, through coordination with MLL-fusion proteins in regulating their critical cotargets, including homeobox A9 (Hoxa9)/myeloid ecotropic viral integration 1 (Meis1)/pre-B-cell leukemia homeobox 3 (Pbx3) genes. Collectively, our data delineate an MLL-fusion/Tet1/Hoxa9/Meis1/Pbx3 signaling axis in MLL-rearranged leukemia and highlight TET1 as a potential therapeutic target in treating this presently therapy-resistant disease.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/fisiologia , Leucemia Mieloide Aguda/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , 5-Metilcitosina/análogos & derivados , Imunoprecipitação da Cromatina , Cromatografia Líquida , Citosina/análogos & derivados , Citosina/metabolismo , Perfilação da Expressão Gênica , Histona-Lisina N-Metiltransferase , Proteínas de Homeodomínio/metabolismo , Humanos , Immunoblotting , Análise em Microsséries , Oxigenases de Função Mista , Proteína Meis1 , Proteínas de Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/genética , Espectrometria de Massas em Tandem
19.
Hum Mol Genet ; 21(26): 5500-10, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23042784

RESUMO

5-Hydroxymethylcytosine (5-hmC) is a newly discovered modified form of cytosine that has been suspected to be an important epigenetic modification in neurodevelopment. While DNA methylation dynamics have already been implicated during neurodevelopment, little is known about hydroxymethylation in this process. Here, we report DNA hydroxymethylation dynamics during cerebellum development in the human brain. Overall, we find a positive correlation between 5-hmC levels and cerebellum development. Genome-wide profiling reveals that 5-hmC is highly enriched on specific gene regions including exons and especially the untranslated regions (UTRs), but it is depleted on introns and intergenic regions. Furthermore, we have identified fetus-specific and adult-specific differentially hydroxymethylated regions (DhMRs), most of which overlap with genes and CpG island shores. Surprisingly, during development, DhMRs are highly enriched in genes encoding mRNAs that can be regulated by fragile X mental retardation protein (FMRP), some of which are disrupted in autism, as well as in many known autism genes. Our results suggest that 5-hmC-mediated epigenetic regulation may broadly impact the development of the human brain, and its dysregulation could contribute to the molecular pathogenesis of neurodevelopmental disorders. Accession number: Sequencing data have been deposited to GEO with accession number GSE40539.


Assuntos
Cerebelo/metabolismo , Citosina/análogos & derivados , Metilação de DNA , DNA/genética , 5-Metilcitosina/análogos & derivados , Adulto , Ilhas de CpG , Citosina/metabolismo , DNA/química , DNA Intergênico , Epigênese Genética , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Humanos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
20.
Nat Methods ; 9(1): 75-7, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101853

RESUMO

We describe strand-specific, base-resolution detection of 5-hydroxymethylcytosine (5-hmC) in genomic DNA with single-molecule sensitivity, combining a bioorthogonal, selective chemical labeling method of 5-hmC with single-molecule, real-time (SMRT) DNA sequencing. The chemical labeling not only allows affinity enrichment of 5-hmC-containing DNA fragments but also enhances the kinetic signal of 5-hmC during SMRT sequencing. We applied the approach to sequence 5-hmC in a genomic DNA sample with high confidence.


Assuntos
Citosina/análogos & derivados , DNA/química , Análise de Sequência de DNA/métodos , 5-Metilcitosina/análogos & derivados , Sequência de Bases , Citosina/análise , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa