Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Mol Cell ; 81(18): 3820-3832.e7, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34233158

RESUMO

A metabolic imbalance between lipid synthesis and degradation can lead to hepatic lipid accumulation, a characteristic of patients with non-alcoholic fatty liver disease (NAFLD). Here, we report that high-fat-diet-induced sterol regulatory element-binding protein (SREBP)-1c, a key transcription factor that regulates lipid biosynthesis, impairs autophagic lipid catabolism via altered H2S signaling. SREBP-1c reduced cystathionine gamma-lyase (CSE) via miR-216a, which in turn decreased hepatic H2S levels and sulfhydration-dependent activation of Unc-51-like autophagy-activating kinase 1 (ULK1). Furthermore, Cys951Ser mutation of ULK1 decreased autolysosome formation and promoted hepatic lipid accumulation in mice, suggesting that the loss of ULK1 sulfhydration was directly associated with the pathogenesis of NAFLD. Moreover, silencing of CSE in SREBP-1c knockout mice increased liver triglycerides, confirming the connection between CSE, autophagy, and SREBP-1c. Overall, our results uncover a 2-fold mechanism for SREBP-1c-driven hepatic lipid accumulation through reciprocal activation and inhibition of hepatic lipid biosynthesis and degradation, respectively.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Fígado Gorduroso/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/fisiologia , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/fisiopatologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Lipogênese , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/fisiologia , Triglicerídeos/metabolismo
2.
Pflugers Arch ; 476(2): 151-161, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37940681

RESUMO

Pancreatic beta cells utilize Ca2+ to secrete insulin in response to glucose. The glucose-dependent increase in cytosolic Ca2+ concentration ([Ca2+]C) activates a series of insulin secretory machinery in pancreatic beta cells. Therefore, the amount of insulin secreted in response to glucose is determined in a [Ca2+]C-dependent manner, at least within a moderate range. However, the demand for insulin secretion may surpass the capability of beta cells. Abnormal elevation of [Ca2+]C levels beyond the beta-cell endurance capacity can damage them by inducing endoplasmic reticulum (ER) stress and cell death programs such as apoptosis. Therefore, while Ca2+ is essential for the insulin secretory functions of beta cells, it could affect their survival at pathologically higher levels. Because an increase in beta-cell [Ca2+]C is inevitable under certain hazardous conditions, understanding the regulatory mechanism for [Ca2+]C is important. Therefore, this review discusses beta-cell function, survival, ER stress, and apoptosis associated with intracellular and ER Ca2+ homeostasis.


Assuntos
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Sinalização do Cálcio , Insulina/metabolismo , Retículo Endoplasmático/metabolismo , Cálcio/metabolismo , Glucose/metabolismo
3.
Inflamm Res ; 69(2): 191-202, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31897507

RESUMO

OBJECTIVES: Obesity is attributable to high free fatty acids, ER stress, oxidative stress and inflammation. The expression of IL-33, IL-1RL1 and IL-1RAP gene was observed in human visceral white fats, pre-adipocytes and adipocytes. The aim of this study was to determine whether IL1RAP and IL1RL1 gene variants were associated with obesity and inflammation mediators. METHODS: 3 SNPs of IL1RAP (rs9990107, rs3836449 and rs9290936) and 11 SNPs of IL1RL1 (rs3771180, rs13431828, rs3214363, rs1420101, rs12905, rs3771175, rs3821204, rs12712142, rs10204137, rs4988958, and rs10206753) were genotyped for 175 obesity (BMI ≥ 25) and 358 non-obesity (BMI < 25.0) subjects. The genotype of SNPs was determined by the Axiom Genome-Wide Human Assay. RESULTS: The allele and genotype frequencies of 2 SNPs in the IL1RAP gene (rs9990107 and rs3836449) and 11 SNPs in the IL1RL1 gene (rs3771180, rs13431828, rs3214363, rs1420101, rs12905, rs3771175, rs3821204, rs12712142, rs10204137, rs4988958 and rs10206753) were significantly associated between the obesity and non-obesity groups. The two haplotypes (GCTTATGAATT and TT-CGACCGCC) in block1 were associated with obesity. In the non-obesity group, genotype frequencies of rs3771180, rs13431828, rs3214363, rs10204137, rs4988958 and rs10206753 SNPs of IL1RL1 showed significant differences in the dominant models in lymphatic cell percentage. The genotype frequencies of rs1420101, rs21905, rs3821024 and rs12712142 SNPs of IL1RL1 showed significant differences in the dominant models in eosinophil percentage. CONCLUSIONS: Our results suggest that IL1RAP and IL1RL1 gene polymorphisms may be associated with obesity and inflammation mediators.


Assuntos
Mediadores da Inflamação , Proteína Acessória do Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Obesidade/genética , Adulto , Idoso , Índice de Massa Corporal , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Humanos , Linfócitos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético/genética , Polimorfismo de Nucleotídeo Único
4.
Pflugers Arch ; 471(7): 1041, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31111222

RESUMO

The publisher would like to apologize for the failed cross-linking of the following Commentary by Jae-Hyung Park and Dae-Kyu Song.

5.
Pflugers Arch ; 471(11-12): 1407-1418, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31667577

RESUMO

Orexin A (OXA) is a neuropeptide associated with plasma insulin and leptin levels involved in body weight and appetite regulation. However, little is known about the effect of OXA on leptin secretion in adipocytes and its physiological roles. Leptin secretion and expression were analysed in 3T3-L1 adipocytes. Plasma leptin, adiponectin and insulin levels were measured by ELISA assay. Phosphorylated signal transducer and activator of transcription 3 (pSTAT3) levels in the hypothalamus were evaluated by western blotting. OXA dose-dependently suppressed leptin secretion from 3T3-L1 adipocytes by inhibiting its gene expression while facilitating adiponectin secretion. The leptin inhibition by OXA was mediated via orexin receptors (OXR1 and OXR2). In addition to the pathway via extracellular signal-regulated kinases, OXA triggered adenylyl cyclase-induced cAMP elevation, which results in protein kinase A-mediated activation of cAMP response element-binding proteins (CREB). Accordingly, CREB inhibition restored the OXA-induced downregulation of leptin gene expression and secretion. Exogenous OXA for 4 weeks decreased fasting plasma leptin levels and increased hypothalamic pSTAT3 levels in high-fat diet-fed mice, regardless of increase in body weight and food intake. These results suggest that high dose of OXA directly inhibits leptin mRNA expression and thus secretion in adipocytes, which may be a peripheral mechanism of OXA for its role in appetite drive during fasting. It may be also critical for lowering basal plasma leptin levels and thus maintaining postprandial hypothalamic leptin sensitivity.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Leptina/sangue , Leptina/metabolismo , Orexinas/farmacologia , Células 3T3-L1 , Animais , Apetite/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Dieta Hiperlipídica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Receptores de Orexina/metabolismo
6.
Pflugers Arch ; 471(6): 829-843, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30617744

RESUMO

Hydrogen peroxide (H2O2) produced endogenously can cause mitochondrial dysfunction and metabolic complications in various cell types by inducing oxidative stress. In the liver, oxidative and endoplasmic reticulum (ER) stress affects the development of non-alcoholic fatty liver disease (NAFLD). Although a link between both stresses and fatty liver diseases has been suggested, few studies have investigated the involvement of catalase in fatty liver pathogenesis. We examined whether catalase is associated with NAFLD, using catalase knockout (CKO) mice and the catalase-deficient human hepatoma cell line HepG2. Hepatic morphology analysis revealed that the fat accumulation was more prominent in high-fat diet (HFD) CKO mice compared to that in age-matched wild-type (WT) mice, and lipid peroxidation and H2O2 release were significantly elevated in CKO mice. Transmission electron micrographs indicated that the liver mitochondria from CKO mice tended to be more severely damaged than those in WT mice. Likewise, mitochondrial DNA copy number and cellular ATP concentrations were significantly lower in CKO mice. In fatty acid-treated HepG2 cells, knockdown of catalase accelerated cellular lipid accumulation and depressed mitochondrial biogenesis, which was recovered by co-treatment with N-acetyl cysteine or melatonin. This effect of antioxidant was also true in HFD-fed CKO mice, suppressing fatty liver development and improving hepatic mitochondrial function. Expression of ER stress marker proteins and hepatic fat deposition also increased in normal-diet, aged CKO mice compared to WT mice. These findings suggest that H2O2 production may be an important event triggering NAFLD and that catalase may be an attractive therapeutic target for preventing NAFLD.


Assuntos
Catalase/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Obesidade/complicações , Animais , Antioxidantes , Estresse do Retículo Endoplasmático , Células Hep G2 , Humanos , Peróxido de Hidrogênio/metabolismo , Fígado/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/enzimologia , Estresse Oxidativo
7.
Pflugers Arch ; 470(12): 1721-1737, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30120555

RESUMO

Obesity and insulin resistance are considered the main causes of nonalcoholic fatty liver disease (NAFLD), and oxidative stress accelerates the progression of NAFLD. Free fatty acids, which are elevated in the liver by obesity or insulin resistance, lead to incomplete oxidation in the mitochondria, peroxisomes, and microsomes, leading to the production of reactive oxygen species (ROS). Among the ROS generated, H2O2 is mainly produced in peroxisomes and decomposed by catalase. However, when the H2O2 concentration increases because of decreased expression or activity of catalase, it migrates to cytosol and other organelles, causing cell injury and participating in the Fenton reaction, resulting in serious oxidative stress. To date, numerous studies have been shown to inhibit the pathogenesis of NAFLD, but treatment for this disease mainly depends on weight loss and exercise. Various molecules such as vitamin E, metformin, liraglutide, and resveratrol have been proposed as therapeutic agents, but further verification of the dose setting, clinical application, and side effects is needed. Reducing oxidative stress may be a fundamental method for improving not only the progression of NAFLD but also obesity and insulin resistance. However, the relationship between NAFLD progression and antioxidants, particularly catalase, which is most commonly expressed in the liver, remains unclear. Therefore, this review summarizes the role of catalase, focusing on its potential therapeutic effects in NAFLD progression.


Assuntos
Catalase/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Humanos , Fígado/enzimologia , Estresse Oxidativo
8.
Biochem Biophys Res Commun ; 496(2): 309-315, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29326040

RESUMO

Migration of surviving kidney tubule cells after sub-lethal injury, for example ischemia/reperfusion (I/R), plays a critical role in recovery. Exocytosis is known to be involved in cell migration, and a key component in exocytosis is the highly-conserved eight-protein exocyst complex. We investigated the expression of a central exocyst complex member, Sec10, in kidneys following I/R injury, as well as the role of Sec10 in wound healing following scratch injury of cultured Madin-Darby canine kidney (MDCK) cells. Sec10 overexpression and knockdown (KD) in MDCK cells were used to investigate the speed of wound healing and the mechanisms underlying recovery. In mice, Sec10 decreased after I/R injury, and increased during the recovery period. In cell culture, Sec10 OE inhibited ruffle formation and wound healing, while Sec10 KD accelerated it. Sec10 OE cells had higher amounts of diacylglycerol kinase (DGK) gamma at the leading edge than did control cells. A DGK inhibitor reversed the inhibition of wound healing and ruffle formation in Sec10 OE cells. Conclusively, downregulation of Sec10 following I/R injury appears to accelerate recovery of kidney tubule cells through activated ruffle formation and enhanced cell migration.


Assuntos
Diacilglicerol Quinase/antagonistas & inibidores , Túbulos Renais/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Proteínas de Transporte Vesicular/genética , Animais , Bioensaio , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Cães , Inibidores Enzimáticos/farmacologia , Exocitose , Regulação da Expressão Gênica , Túbulos Renais/patologia , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/farmacologia , Quinazolinonas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Proteínas de Transporte Vesicular/agonistas , Proteínas de Transporte Vesicular/antagonistas & inibidores , Proteínas de Transporte Vesicular/metabolismo , Cicatrização/fisiologia
9.
Mol Cell Biochem ; 444(1-2): 17-25, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29196971

RESUMO

In this study, we examined the effect of tomatidine on tumor necrosis factor (TNF)-α-induced apoptosis in C2C12 myoblasts. TNF-α treatment increased cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase (PARP) protein levels in a dose- and time-dependent manner. Pretreatment of cells with 10 µM tomatidine prevented TNF-α-induced apoptosis, caspase 3 cleavage, and PARP cleavage. Cells were treated with 100 ng/mL TNF-α for 24 h, and flow cytometry was utilized to assess apoptosis using annexin-V and 7-aminoactinomycin D. TNF-α up-regulated activating transcription factor 4 (ATF4) and C/EBP homologous protein (CHOP) expression. This effect was suppressed by pretreatment with tomatidine. Pretreatment with 4-phenylbutyric acid (a chemical chaperone) also inhibited TNF-α-induced cleavage of caspase 3 and PARP and up-regulation of ATF4 and CHOP expression. In addition, tomatidine-mediated inhibition of phosphorylation of c-Jun amino terminal kinase (JNK) attenuated TNF-α-induced cleavage of PARP and caspase 3. However, tomatidine did not affect NF-κB activation in TNF-α-treated C2C12 myoblast cells. Taken together, the present study demonstrates that tomatidine attenuates TNF-α-induced apoptosis through down-regulation of CHOP expression and inhibition of JNK activation.


Assuntos
Apoptose/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Mioblastos/metabolismo , Tomatina/análogos & derivados , Fator de Necrose Tumoral alfa/farmacologia , Fator 4 Ativador da Transcrição/metabolismo , Animais , Caspase 3/metabolismo , Linhagem Celular , Camundongos , Mioblastos/citologia , Tomatina/farmacologia , Fator de Transcrição CHOP
10.
Biochem Biophys Res Commun ; 469(2): 216-21, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26655814

RESUMO

Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes insulin release from pancreatic beta cells. GLP-1 has been shown to confer glucose-insensitive beta cells with glucose sensitivity by modulation of the activity of the ATP-sensitive potassium (KATP) channel. The channel closing effect of GLP-1, interacting with corresponding G-protein-coupled receptors, has been well established; however, to our knowledge, no study has shown whether GLP-1 directly induces activation of beta-cell KATP channels. Here, we aimed to evaluate whether the activation of beta-cell KATP channels by GLP-1 exists and affects intracellular Ca(2+) levels ([Ca(2+)]i). KATP channel activity was measured in isolated rat pancreatic beta cells by whole-cell perforated patch-clamp recordings with a diazoxide-containing pipette solution. Changes in [Ca(2+)]i and the subcellular localization of KATP channels were observed using the calcium-sensitive dye fura-4/AM and anti-Kir6.2 antibodies in INS-1 beta cells, respectively. To eliminate the well-known inhibitory effects of GLP-1 on KATP channel activity, channels were fully inhibited by pretreatment with methyl pyruvate and epigallocatechin-3-gallate. In the pretreated beta cells, GLP-1 and exendin-4 promptly activated the channels, reducing [Ca(2+)]i. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 blocked the effects of GLP-1 on channel activity. Moreover, phosphatidylinositol-3,4,5-trisphosphate mimicked the effects of GLP-1. These results suggested that beta-cell GLP-1 receptor signaling involved activation of KATP channels via a PI3K-dependent pathway. This alternative mechanism of GLP-1 function may act as a negative feedback pathway, modulating the glucose-dependent GLP-1 inhibition on KATP channel activity.


Assuntos
Cálcio/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células Secretoras de Insulina/fisiologia , Ativação do Canal Iônico/fisiologia , Canais KATP/fisiologia , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Ratos
11.
Biochem J ; 467(3): 453-60, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25695641

RESUMO

Insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2), one of the most abundant circulating IGFBPs, is known to attenuate the biological action of IGF-1. Although the effect of IGFBP-2 in preventing metabolic disorders is well known, its regulatory mechanism remains unclear. In the present study, we demonstrated the transcriptional regulation of the Igfbp-2 gene by peroxisome-proliferator-activated receptor (PPAR) α in the liver. During fasting, both Igfbp-2 and PPARα expression levels were increased. Wy14643, a selective PPARα agonist, significantly induced Igfbp-2 gene expression in primary cultured hepatocytes. However, Igfbp-2 gene expression in Pparα null mice was not affected by fasting or Wy14643. In addition, through transient transfection and chromatin immunoprecipitation assay in fasted livers, we determined that PPARα bound to the putative PPAR-responsive element between -511 bp and -499 bp on the Igfbp-2 gene promoter, indicating that the Igfbp-2 gene transcription is activated directly by PPARα. To explore the role of PPARα in IGF-1 signalling, we treated primary cultured hepatocytes with Wy14643 and observed a decrease in the number of IGF-1 receptors (IGF-1Rs) and in Akt phosphorylation. No inhibition was observed in the hepatocytes isolated from Pparα null mice. These results suggest that PPARα controls IGF-1 signalling through the up-regulation of hepatic Igfbp-2 transcription during fasting and Wy14643 treatment.


Assuntos
Jejum/metabolismo , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR alfa/deficiência , PPAR alfa/genética , PPAR gama/agonistas , Proliferadores de Peroxissomos/farmacologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rosiglitazona , Transdução de Sinais , Tiazolidinedionas/farmacologia , Regulação para Cima/efeitos dos fármacos
12.
Drug Chem Toxicol ; 39(2): 153-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26114412

RESUMO

OBJECTIVE: Many studies have shown that melatonin (MLT) has an anti-genotoxic effect in various tissues and cell lines. The aim of this study was to investigate the anti-genotoxic effect of MLT on normal human peripheral lymphocytes by assessing sister chromatid exchange (SCE) in vitro and in vivo. MATERIALS AND METHODS: Cells were treated with 50 and 200 µM of MLT. The human volunteers (n = 20) for the in vivo study were administered a single dose of 3 mg MLT daily for 2 weeks. After sufficient time for its clearance, 1.5 mg of MLT daily was then administered to the same volunteers at same the period. RESULTS: Our results demonstrated the anti-genotoxic effect of MLT in human blood lymphocyte in vitro and in vivo. In vitro, hypoxia increased the SCE frequency compared to the control and both doses of MLT significantly decreased the SCE frequency in the hypoxic cells (p < 0.001). In vivo, oral administration of 3 mg MLT significantly increased the frequency of SCE, yet a small increase of SCE by hypoxia was found. Oral administration of 1.5 mg MLT showed no DNA damage but it had an anti-genotoxic effect. DISCUSSION AND CONCLUSION: MLT may prove useful for reducing the genotoxic effects of hypoxia in peripheral lymphocytes and suggest its possible role for ischemic diseases.


Assuntos
Antimutagênicos/farmacologia , Hipóxia/genética , Linfócitos/efeitos dos fármacos , Melatonina/farmacologia , Troca de Cromátide Irmã/efeitos dos fármacos , Administração Oral , Adulto , Antimutagênicos/administração & dosagem , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Voluntários Saudáveis , Humanos , Masculino , Melatonina/administração & dosagem , Troca de Cromátide Irmã/genética , Adulto Jovem
13.
Diabetologia ; 58(7): 1542-50, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25813215

RESUMO

AIMS/HYPOTHESIS: Orexin A (OXA) is a neuropeptide implicated in the regulation of arousal status and energy metabolism. Orexin receptors are expressed not only in the central nervous system but also in the pancreas and adipose tissue. However, little is known about the physiological function of orexins. This study investigated the role of exogenous OXA in blood glucose control after glucose load in mice. In addition, the effect of OXA on insulin secretion was also identified in mouse pancreatic beta cells. METHODS: Insulin secretion and intracellular Ca(2+) levels were measured in perifused mouse islets. To investigate the effects of exogenous OXA on blood glucose levels in vivo, intraperitoneal glucose tolerance tests were performed after a subcutaneous injection of OXA in normal and high-fat diet-induced diabetic mice. RESULTS: OXA significantly potentiated glucose-stimulated insulin secretion in vitro, which increased intracellular Ca(2+) levels, mainly through adenylate cyclase and ryanodine receptor activation. This Ca(2+)-dependent insulinotropic effect of OXA was blocked in Epac2 (Rapgef4)-deficient beta cells. After a glucose load in mice, exogenous OXA decreased blood glucose levels, compared with the control, by enhancing plasma insulin and decreasing plasma glucagon levels. Additionally, OXA caused a delayed increase in plasma leptin levels, resulting in lower plasma insulin levels when blood glucose levels fell to baseline. CONCLUSIONS/INTERPRETATION: These results suggest that OXA might be a critical regulator of insulin, glucagon and leptin secretion in response to glucose. Thus, exogenous OXA might have therapeutic potential in improving blood glucose control in patients with type 2 diabetes.


Assuntos
Glucose/farmacologia , Insulina/sangue , Leptina/sangue , Orexinas/farmacologia , Animais , Glicemia/metabolismo , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Glucagon/sangue , Teste de Tolerância a Glucose , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Orexina/efeitos dos fármacos
14.
Biochem Biophys Res Commun ; 457(2): 148-53, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25529453

RESUMO

Neuroendocrine regulatory peptides (NERP-1 and -2) are novel amidated peptides derived from VGF, a polypeptide secreted from neurons and endocrine cells through a regulated pathway. Dr. Nakazato Masamitsu reported that NERP-1 and -2 may have a local modulator function on the human endocrine system, and clearly showed expression of NERP-1 and -2 in human pancreas islets. Based on these data, we investigated the alteration of insulin secretion, insulin granule-related protein, and pancreas-specific transcription factors in response to NERPs expression. We confirmed the expression of NERP-1 and -2 in the pancreas of a human diabetes patient, in addition to diabetic animal models. When INS1 cells and primary rat islets were incubated with 10nM NERPs for 3 days, glucose-stimulated insulin secretion levels were blunted by NERP-1 and -2. The number of insulin granules released from the readily releasable pool, which is associated with the first phase of glucose-stimulated insulin release, was decreased by NERP-1 and -2. Insulin granule-related proteins and mRNAs were down-regulated by NERP-2 treatment. NERP-2 decreased the expression of BETA2/NeuroD and insulin and controlled the nucleo-cytoplasmic translocation of FOXO1 and Pdx-1. We observed that NERP-2 levels were dramatically increased in diabetic pancreas. In conclusion, NERP-2 may play an important role in insulin secretion through the regulation of insulin secretory granules and ß-cell transcription factors. In addition, NERP-2 expression is increased in diabetic conditions. Therefore, we suggest that NERPs may be potent endogenous suppressors of glucose-dependent insulin secretion.


Assuntos
Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Humanos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Ratos Sprague-Dawley , Vesículas Secretórias/metabolismo , Fatores de Transcrição/metabolismo
15.
Biochem Biophys Res Commun ; 459(4): 561-7, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25757909

RESUMO

Glucagon-like peptide-1 (GLP-1) reduces pancreatic ß-cell apoptosis in type 2 diabetes. Glucotoxiciy is a main cause of ß-cell apoptosis in type 2 diabetes. The aims of this study were to investigate the anti-apoptotic mechanisms of GLP-1 against glucotoxicity and whether physiological short-term treatment with GLP-1 can protect ß-cells from glucotoxicity-induced apoptosis. GLP-1 treatment for only 30 min alleviated high glucose-induced ß-cell apoptosis. The effect of GLP-1 was related with phosphoinositide 3-kinase (PI3K)/AKT-S473 phosphorylation. The increase in pAKT-S473 led to suppression of FoxO-1. GLP-1-induced AKT-S473 activation and FoxO-1 suppression were abolished by the selective inactivation of mTOR complex (mTORC) 2 using small interfering RNA directed towards the rapamycin-insensitive companion of mTOR. The protective effect of GLP-1 on ß-cell apoptosis was also abolished by the selective inactivation of mTORC2. Hence, the protective effect of GLP-1 against glucotoxicity may be mediated by FoxO-1 suppression through the PI3K/mTORC2/AKT-S473 phosphorylation. This report provides evidence that short-term treatment with GLP-1 is beneficial to protect against glucotoxicity-induced ß-cell apoptosis.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/toxicidade , Ilhotas Pancreáticas/efeitos dos fármacos , Animais , Sequência de Bases , Primers do DNA , Peptídeo 1 Semelhante ao Glucagon/administração & dosagem , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Endogâmicos C57BL , Complexos Multiproteicos/metabolismo , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Serina-Treonina Quinases TOR/metabolismo
16.
Biochem Biophys Res Commun ; 458(3): 462-469, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25660457

RESUMO

The endoplasmic reticulum (ER) stress induces hepatic steatosis and inflammation in the liver. Although melatonin ameliorates ER stress-target genes, it remains unknown whether melatonin protects against hepatic steatosis as well as inflammation through regulation of miRNA. MicroRNAs have been identified as pivotal regulators in the field of gene regulation and their dysfunctions are a common feature in a variety of metabolic diseases. Especially, among miRNAs, miR-23a has been shown to regulate ER stress. Herein, we investigated the crucial roles of melatonin in hepatic steatosis and inflammation in vivo. Tunicamycin challenge caused increase of hepatic triglyceride and intracellular calcium levels through activation of ER stress, whereas these phenomena were partially disrupted by melatonin. We also demonstrated that expression of miR-23a stimulated with tunicamycin was rescued by melatonin treatment, resulting in reduced ER stress in primary hepatocytes. Overall, these results suggest a new function of melatonin that is involved in ameliorating ER stress-induced hepatic steatosis and inflammation by attenuating miR-23a. Melatonin may be useful as a pharmacological agent to protect against hepatic metabolic diseases due to its ability to regulate expression of miR-23a.


Assuntos
Antioxidantes/uso terapêutico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/genética , Melatonina/uso terapêutico , MicroRNAs/genética , Animais , Antioxidantes/metabolismo , Linhagem Celular , Células Cultivadas , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Melatonina/metabolismo , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Tunicamicina
18.
J Pineal Res ; 56(2): 143-53, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24168371

RESUMO

Prolonged hyperglycemia results in pancreatic ß-cell dysfunction and apoptosis, referred to as glucotoxicity. Although both oxidative and endoplasmic reticulum (ER) stresses have been implicated as major causative mechanisms of ß-cell glucotoxicity, the reciprocal importance between the two remains to be elucidated. The aim of this study was to evaluate the differential effect of oxidative stress and ER stress on ß-cell glucotoxicity, by employing melatonin which has free radical-scavenging and antioxidant properties. As expected, in ß-cells exposed to prolonged high glucose levels, cell viability and glucose-stimulated insulin secretion (GSIS) were significantly impaired. Melatonin treatment markedly attenuated cellular apoptosis by scavenging reactive oxygen species via its plasmalemmal receptor-independent increase in antioxidant enzyme activity. However, treatments with antioxidants alone were insufficient to recover the impaired GSIS. Interestingly, 4-phenylbutyric acid (4-PBA), a chemical chaperone that attenuate ER stress by stabilizing protein structure, alleviated the impaired GSIS, but not apoptosis, suggesting that glucotoxicity induces oxidative and ER stress independently. We found that cotreatment of glucotoxic ß-cells with melatonin and 4-PBA dramatically improved both their survival and insulin secretion. Taken together, these results suggest that ER stress may be the more critical mechanism for prolonged high-glucose-induced GSIS impairment, whereas oxidative stress appears to be more critical for the impaired ß-cell viability. Therefore, combinatorial therapy of melatonin with an ER stress modifier may help recover pancreatic ß-cells under glucotoxic conditions in type 2 diabetes.


Assuntos
Antioxidantes/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glucose/toxicidade , Células Secretoras de Insulina/efeitos dos fármacos , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Estresse Oxidativo/fisiologia , Pâncreas , Ratos , Ratos Sprague-Dawley , Triptaminas/farmacologia
19.
Mol Cell Biol ; 44(6): 245-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38804232

RESUMO

Betaine-homocysteine S-methyltransferase (BHMT) is one of the most abundant proteins in the liver and regulates homocysteine metabolism. However, the molecular mechanisms underlying Bhmt transcription have not yet been elucidated. This study aimed to assess the molecular mechanisms underlying Bhmt transcription and the effect of BHMT deficiency on metabolic functions in the liver mediated by liver receptor homolog-1 (LRH-1). During fasting, both Bhmt and Lrh-1 expression increased in the liver of Lrh-1f/f mice; however, Bhmt expression was decreased in LRH-1 liver specific knockout mice. Promoter activity analysis confirmed that LRH-1 binds to a specific site in the Bhmt promoter region. LRH-1 deficiency was associated with elevated production of reactive oxygen species (ROS), lipid peroxidation, and mitochondrial stress in hepatocytes, contributing to hepatic triglyceride (TG) accumulation. In conclusion, this study suggests that the absence of an LRH-1-mediated decrease in Bhmt expression promotes TG accumulation by increasing ROS levels and inducing mitochondrial stress. Therefore, LRH-1 deficiency not only leads to excess ROS production and mitochondrial stress in hepatocytes, but also disrupts the methionine cycle. Understanding these regulatory pathways may pave the way for novel therapeutic interventions against metabolic disorders associated with hepatic lipid accumulation.


Assuntos
Betaína-Homocisteína S-Metiltransferase , Hepatócitos , Fígado , Metionina , Camundongos Knockout , Espécies Reativas de Oxigênio , Receptores Citoplasmáticos e Nucleares , Triglicerídeos , Animais , Fígado/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Betaína-Homocisteína S-Metiltransferase/metabolismo , Betaína-Homocisteína S-Metiltransferase/genética , Hepatócitos/metabolismo , Metionina/metabolismo , Triglicerídeos/metabolismo , Regiões Promotoras Genéticas/genética , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Peroxidação de Lipídeos
20.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622198

RESUMO

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Assuntos
Ferro , Lipocalina-2 , Cirrose Hepática , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Masculino , Camundongos , Tetracloreto de Carbono/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Ferro/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa