RESUMO
A new ratiometric fluorescent probe based on Förster resonance energy transfer (FRET) for sensing lysosomal pH has been developed. The probe (RMPM) was composed of imidazo[1,5-α]pyridine quaternary ammonium salt fluorophore as the FRET donor and the rhodamine moiety as the FRET acceptor. It's the first time to report that imidazo[1,5-α]pyridine quaternary ammonium salt acts as the FRET donor. The ratio of fluorescence intensity of the probe at two wavelengths (I424/I581) changed significantly and responded linearly toward minor pH changes in the range of 5.4-6.6. It should be noted that it's rare to report that a ratiometric pH probe could detect so weak acidic pH with pKa = 6.31. In addition, probe RMPM exhibited excellent water-solubility, fast-response, all-right selectivity and brilliant reversibility. Moreover, RMPM has been successfully applied to sensing lysosomal pH in HeLa cells and has low cytotoxicity.
Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Lisossomos/química , Compostos de Amônio Quaternário/química , Espectrometria de Fluorescência/métodos , Água/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por ComputadorRESUMO
A series of novel 2-acyl-6-aryl substituted indolizine derivatives was synthesized by a novel tandem reaction between 4-acyl-pyrrole-2-carbaldehyde derivatives and ethyl 4-bromo-3-arylbut-2-enoate under mild conditions. The compounds were characterized using IR, (1)H NMR (13)C NMR and HRMS. The crystal structure of 7a was determined using single crystal X-ray crystallography. The absorption results showed that compounds 7a-e presented their absorption maxima at ca. 270 nm, while compounds 7f and 7g with a larger conjugation system exhibited red-shifted absorption character (ca. 280 nm). Fluorescence spectra revealed that these compounds exhibited blue fluorescence (434-456 nm) in dilute solutions and showed quantum yields of fluorescence between 0.02 and 0.39 in dichloromethane.