RESUMO
SARS-CoV-2 primary strain-based vaccination exerts a protective effect against Omicron variants-initiated infection, symptom occurrence, and disease severity in a booster-dependent manner. Yet, the underlying mechanisms remain unclear. During the 2022 Omicron outbreak in Shanghai, we enrolled 122 infected adults and 50 uninfected controls who had been unvaccinated or vaccinated with two or three doses of COVID-19 inactive vaccines and performed integrative analysis of 41-plex CyTOF, RNA-seq, and Olink on their peripheral blood samples. The frequencies of HLA-DRhi classical monocytes, non-classical monocytes, and Th1-like Tem tended to increase, whereas the frequency of Treg was reduced by booster vaccine, and they influenced symptom occurrence in a vaccine dose-dependent manner. Intercorrelation and mechanistic analysis suggested that the booster vaccination induced monocytic training, which would prime monocytic activation and maturation rather than differentiating into myeloid-derived suppressive cells upon Omicron infections. Overall, our study provides insights into how booster vaccination elaborates protective immunity across SARS-CoV-2 variants.
RESUMO
The heart is an autoimmune-prone organ. It is crucial for the heart to keep injury-induced autoimmunity in check to avoid autoimmune-mediated inflammatory disease. However, little is known about how injury-induced autoimmunity is constrained in hearts. Here, we reveal an unknown intramyocardial immunosuppressive program driven by Tbx1, a DiGeorge syndrome disease gene that encodes a T-box transcription factor (TF). We found induced profound lymphangiogenic and immunomodulatory gene expression changes in lymphatic endothelial cells (LECs) after myocardial infarction (MI). The activated LECs penetrated the infarcted area and functioned as intramyocardial immune hubs to increase the numbers of tolerogenic dendritic cells (tDCs) and regulatory T (Treg) cells through the chemokine Ccl21 and integrin Icam1, thereby inhibiting the expansion of autoreactive CD8+ T cells and promoting reparative macrophage expansion to facilitate post-MI repair. Mimicking its timing and implementation may be an additional approach to treating autoimmunity-mediated cardiac diseases.
RESUMO
BACKGROUNDS: The respiratory microbiota and radiomics correlate with the disease severity and prognosis of chronic obstructive pulmonary disease (COPD). We aim to characterize the respiratory microbiota and radiomics features of COPD patients and explore the relationship between them. METHODS: Sputa from stable COPD patients were collected for bacterial 16 S rRNA gene sequencing and fungal Internal Transcribed Spacer (ITS) sequencing. Chest computed tomography (CT) and 3D-CT analysis were conducted for radiomics information, including the percentages of low attenuation area below - 950 Hounsfield Units (LAA%), wall thickness (WT), and intraluminal area (Ai). WT and Ai were adjusted by body surface area (BSA) to WT/[Formula: see text] and Ai/BSA, respectively. Some key pulmonary function indicators were collected, which included forced expiratory volume in one second (FEV1), forced vital capacity (FVC), diffusion lung carbon monoxide (DLco). Differences and correlations of microbiomics with radiomics and clinical indicators between different patient subgroups were assessed. RESULTS: Two bacterial clusters dominated by Streptococcus and Rothia were identified. Chao and Shannon indices were higher in the Streptococcus cluster than that in the Rothia cluster. Principal Co-ordinates Analysis (PCoA) indicated significant differences between their community structures. Higher relative abundance of Actinobacteria was detected in the Rothia cluster. Some genera were more common in the Streptococcus cluster, mainly including Leptotrichia, Oribacterium, Peptostreptococcus. Peptostreptococcus was positively correlated with DLco per unit of alveolar volume as a percentage of predicted value (DLco/VA%pred). The patients with past-year exacerbations were more in the Streptococcus cluster. Fungal analysis revealed two clusters dominated by Aspergillus and Candida. Chao and Shannon indices of the Aspergillus cluster were higher than that in the Candida cluster. PCoA showed distinct community compositions between the two clusters. Greater abundance of Cladosporium and Penicillium was found in the Aspergillus cluster. The patients of the Candida cluster had upper FEV1 and FEV1/FVC levels. In radiomics, the patients of the Rothia cluster had higher LAA% and WT/[Formula: see text] than those of the Streptococcus cluster. Haemophilus, Neisseria and Cutaneotrichosporon positively correlated with Ai/BSA, but Cladosporium negatively correlated with Ai/BSA. CONCLUSIONS: Among respiratory microbiota in stable COPD patients, Streptococcus dominance was associated with an increased risk of exacerbation, and Rothia dominance was relevant to worse emphysema and airway lesions. Peptostreptococcus, Haemophilus, Neisseria and Cutaneotrichosporon probably affected COPD progression and potentially could be disease prediction biomarkers.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Pulmão , Volume Expiratório Forçado , Capacidade VitalRESUMO
Laterality disease is frequently associated with congenital heart disease (CHD). However, it is unclear what is behind this association, a pleiotropic effect of common genetic causes of laterality diseases or the impact of abnormal left-right patterning on the downstream cardiovascular development. MEGF8 is a disease gene of Carpenter syndrome characterized by defective lateralization and CHD. Here we performed spatial and temporal deletion to dissect the tissue and time requirements of Megf8 on cardiovascular development. None of conditional deletions in cardiomyocytes, endothelium/endocardium, epicardium, cardiac mesoderm or neural crest cells led to cardiovascular defects. More surprisingly, temporal deletion with a ubiquitous Cre driver at embryonic day 7.5 (E7.5), a time point before symmetry break and cardiogenesis, causes preaxial polydactyly (PPD) and exencephaly, but not laterality and cardiovascular defects. These data suggested that Megf8 was dispensable for cardiac organogenesis. Only with E6.5 deletion, we observed aortic arch artery defects including right aortic arch, an indicator of reversed left-right patterning. The concurrence of laterality and cardiovascular defects in pre-streak stage deletion rather than cardiac organogenesis stage deletion indicates that the laterality defect may directly impact heart development. Interestingly, the latent effect of Megf8 on the left-right patterning suggests that the regulation of laterality may be much earlier than we previously thought.
Assuntos
Coração/embriologia , Proteínas de Membrana/fisiologia , Alelos , Animais , Padronização Corporal , Desenvolvimento Embrionário/genética , Deleção de Genes , Cardiopatias Congênitas/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Mutação , FenótipoRESUMO
Megf6, a member of MEGF (multiple EGF-like domains) protein family, is a conserved high molecular weight protein with 30 EGF-like domains. Although many members of the MEGF protein family are essential for embryonic development and homeostasis, the role of Megf6 in development and physiology is still unknown. Here, we generated Megf6-deficient mice using CRISPR-Cas9 technique and showed that Megf6 is dispensable for embryonic development. We also constructed the Megf6Cre allele to study Megf6-expressing cell lineages. Our results showed that Megf6-expressing cells contribute to the periotic mesenchyme and its derivatives, skin epidermis, certain cells in brain and ribs. Therefore, the Megf6Cre allele can be a useful tool for conditional deletion in these tissues, in particular for periotic mesenchyme deletion.
Assuntos
Técnicas de Introdução de Genes/métodos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Alelos , Animais , Sistemas CRISPR-Cas , Linhagem da Célula , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , CamundongosRESUMO
A three-dimensional (3D) nitrogen-doped reduced graphene oxide (rGO)-carbon nanotubes (CNTs) architecture supporting ultrafine Pd nanoparticles is prepared and used as a highly efficient electrocatalyst. Graphene oxide (GO) is first used as a surfactant to disperse pristine CNTs for electrochemical preparation of 3D rGO@CNTs, and subsequently one-step electrodeposition of the stable colloidal GO-CNTs solution containing Na2 PdCl4 affords rGO@CNTs-supported Pd nanoparticles. Further thermal treatment of the Pd/rGO@CNTs hybrid with ammonia achieves not only in situ nitrogen-doping of the rGO@CNTs support but also extraordinary size decrease of the Pd nanoparticles to below 2.0â nm. The resulting catalyst is characterized by scanning and transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Catalyst performance for the methanol oxidation reaction is tested through cyclic voltammetry and chronoamperometry techniques, which shows exceedingly high mass activity and superior durability.
RESUMO
Purpose: Allergic asthma is a heterogeneous disease with complex underlying mechanisms. Cytokines are key mediators in immune system and potential indicators of disease status. The aim of this study is to compare the difference of serum cytokine profile in allergic asthma patients with different disease severity and explore candidate biomarkers for disease monitoring and targeting therapeutic agents. Patients and Methods: A total of 40 allergic asthmatics (mild, n=22; moderate-to-severe, n=18) were included in this study. Serum samples, lung function and exhaled nitric oxide data were collected from each subject. A Meso Scale Discovery (MSD) electrochemiluminescence platform was applied to access serum levels of 33 cytokines. Serum cytokine profile was compared between mild and moderate-to-severe allergic asthmatics, and the correlation between serum cytokine levels, lung function and exhaled nitric oxide were analyzed. Results: Moderate-to-severe allergic asthmatics displayed higher levels of eotaxin-1, eotaxin-2, MCP-1, MCP-2, MCP-3, YKL-40 and lower IL-23, IL-31 and TRAIL in serum in comparison with mild allergic asthmatics. Serum YKL-40, eotaxin-1 and MCP-1 had the best ability to discriminate mild and moderate-to-severe allergic asthmatics, with an AUC of 0.833, 0.811 and 0.760. Serum IP-10 was positively correlated with FeNO levels, while FnNO displayed a strong positive correlation with serum IL-25. Conclusion: Compared with mild allergic asthmatics, significant increase in serum eotaxin-1, eotaxin-2, MCP-1, MCP-2, MCP-3, YKL-40 and decrease in serum IL-23, IL-31 and TRAIL was noted in moderate-to-severe allergic asthmatics. YKL-40, eotaxin-1 and MCP-1 might be candidate biomarkers in reflecting severity in allergic asthma patients.
RESUMO
During coronary vasculature development, endothelial cells enclose the embryonic heart to form the primitive coronary plexus. This structure is remodeled upon recruitment of epicardial cells that may undergo epithelial-mesenchymal transition (EMT) to enable migration and that give rise to smooth muscle cells. In mice expressing a loss-of-function mutant form of Wdpcp, a gene involved in ciliogenesis, the enclosure of the surface of the heart by the subepicardial coronary plexus was accelerated because of enhanced chemotactic responses to Shh. Coronary arteries, but not coronary veins in Wdpcp mutant mice, showed reduced smooth muscle cell coverage. In addition, Wdpcp mutant hearts had reduced expression of EMT and mesenchymal markers and had fewer epicardium-derived cells (EPDCs) that showed impaired migration. Epicardium-specific deletion of Wdpcp recapitulated the coronary artery defect of the Wdpcp mutant. Thus, Wdpcp promotes epithelial EMT and EPDC migration, processes that are required for remodeling of the coronary primitive plexus. The Wdpcp mutant mice will be a useful tool to dissect the molecular mechanisms that govern the remodeling of the primitive plexus during coronary development.
Assuntos
Movimento Celular/genética , Vasos Coronários/fisiologia , Transição Epitelial-Mesenquimal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pericárdio/metabolismo , Remodelação Vascular/fisiologia , Animais , Vasos Coronários/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Pericárdio/citologia , Pericárdio/embriologia , Transdução de Sinais/genética , Remodelação Vascular/genéticaRESUMO
Antimicrotubule agent vincristine (VCR) has long been known as an alternative treatment for frequent relapse nephrotic syndrome and steroid-dependent nephrotic syndrome (SDNS). However, the mechanism is unknown. Here we found that VCR at a dosage much lower than that as an antimicrotubule agent can alleviate adriamycin (ADR)-induced proteinuria and podocyte foot process effacement. In cultured podocytes, VCR prevents ADR-induced actin fiber disorganization. In both in vitro and in vivo models, VCR suppresses ADR-induced overexpression of α3ß1 integrin and focal adhesion kinase (FAK). These data suggest that VCR may relieve ADR-induced nephropathy through inhibiting injury-induced activation of integrin outside-in signaling to prevent actin cytoskeleton remodeling. Hence, our work reveals a novel role of VCR in regulating actin fiber assembly and provides first evidence on the therapeutic mechanism of VCR on nephrotic syndrome.
RESUMO
Reduced graphene oxide (rGO) is a promising support material for nanosized electrocatalysts. However, the conventional stacking arrangement of rGO sheets confines the electrocatalysts between rGO layers, which decreases the number of catalytic sites substantially. We report here a facile synthesis of vertically oriented reduced graphene oxide (VrGO) through cyclic voltammetric electrolysis of graphene oxide (GO) in the presence of Na2 PdCl4 . Experiments without Pd nanoparticles or with a low loading amount of Pd nanoparticles results in the deposition of rGO parallel to the electrodes. The vertical orientation of Pd/rGO nanoflakes causes a remarkable enhancement of the catalytic activity toward methanol electro-oxidation. The mass activity (620.1 A gPd (-1) ) of Pd/VrGO is 1.9 and 6.2 times that of Pd/flat-lying rGO (331.8 A gPd (-1) ) and commercial Pd/C (100.5 A gPd (-1) ), respectively. Furthermore, the Pd/VrGO catalyst shows excellent resistance to CO poisoning. This work provides a simple wet-chemical method for VrGO preparation.