Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Am Chem Soc ; 144(34): 15643-15652, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35960252

RESUMO

Cascade polymerizations recently gained significant attention due to their use of unique transformations, involving multiple bond making and/or breaking steps, when converting monomers to repeat units. However, designing complex cascade polymerizations which proceed in a controlled manner is very challenging. Various side reactions can hamper polymerization performance and the efficiency of the cascade. In this work, we explore a metathesis-based cascade polymerization of unique polycyclic enyne monomers, which contain a terminal alkyne and two cyclic alkenes. By modifying the monomer's stereochemistry, linkers, and ring types, we were able to modulate the polymerization performance and the extent to which a complete cascade reaction occurs. Upon subjecting the resulting polymers to mild acidic conditions and analyzing the degradation products, we were able to calculate the percentage of repeat units derived from a complete cascade reaction (termed the cascade efficiency). In addition to identifying how various structural parameters in the monomer influence the success of a cascade polymerization, we were able to achieve controlled living cascade polymerizations of multiple monomers with >99% cascade efficiency and produce various block copolymers.


Assuntos
Alcinos , Polímeros , Alcinos/química , Polimerização , Polímeros/química
2.
Int J Mol Sci ; 22(13)2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206763

RESUMO

Acute pancreatitis (AP) is an inflammatory disorder, involving acinar cell death and the release of inflammatory cytokines. Currently, there are limited effective therapeutic agents for AP. Betulinic acid (BA) is a pentacyclic triterpenoid extracted from Betula platyphylla that has been shown to have anti-inflammatory effects. In this study, we aimed to investigate the effects of BA on AP and elucidate the potential underlying mechanisms. AP was induced in mice through six intraperitoneal injections of cerulein. After the last cerulein injection, the mice were sacrificed. Our results revealed that pre- and post-treatment with BA significantly reduced the severity of pancreatitis, as evidenced by a decrease in histological damage in the pancreas and lung, serum amylase and lipase activity and pancreatic myeloperoxidase activity. Furthermore, BA pretreatment reduced proinflammatory cytokine production, augmentation of chemokines, and infiltration of macrophages and neutrophils in the pancreas of AP mice. In addition, mice that were pretreated with BA showed a reduction in Iκ-Bα degradation and nuclear factor-kappa B (NF-κB) binding activity in the pancreas. Moreover, BA reduced the production of proinflammatory cytokines and NF-κB activation in pancreatic acinar cells (PACs). These findings suggest that BA may have prophylactic and therapeutic effects on AP via inhibition of the NF-κB signaling pathway.


Assuntos
Anti-Inflamatórios/uso terapêutico , NF-kappa B/metabolismo , Pancreatite/tratamento farmacológico , Triterpenos Pentacíclicos/uso terapêutico , Amilases/sangue , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Lipase/sangue , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Triterpenos Pentacíclicos/farmacologia , Peroxidase/metabolismo , Transdução de Sinais , Ácido Betulínico
3.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572597

RESUMO

Cisplatin is the most widely used chemotherapeutic agent. However, it often causes nephrotoxicity, which results in acute kidney injury (AKI). Therefore, we urgently need a drug that can reduce the nephrotoxicity induced by cisplatin. Loganin is a major iridoid glycoside isolated from Corni fructus that has been used as an anti-inflammatory agent in various pathological models. However, the renal protective activity of loganin remains unclear. In this study, to examine the protective effect of loganin on cisplatin-induced AKI, male C57BL/6 mice were orally administered with loganin (1, 10, and 20 mg/kg) 1 h before intraperitoneal injection of cisplatin (10 mg/kg) and sacrificed at three days after the injection. The administration of loganin inhibited the elevation of blood urea nitrogen (BUN) and creatinine (CREA) in serum, which are used as biomarkers of AKI. Moreover, histological kidney injury, proximal tubule damages, and renal cell death, such as apoptosis and ferroptosis, were reduced by loganin treatment. Also, pro-inflammatory cytokines, such as interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α, reduced by loganin treatment. Furthermore, loganin deactivated the extracellular signal-regulated kinases (ERK) 1 and 2 during AKI. Taken together, our results suggest that loganin may attenuate cisplatin-induced AKI through the inhibition of ERK1/2.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Cisplatino/efeitos adversos , Iridoides/administração & dosagem , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Animais , Apoptose/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Morte Celular/efeitos dos fármacos , Creatinina/sangue , Citocinas/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Biomacromolecules ; 21(9): 3539-3546, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32678573

RESUMO

In this study, we propose a reversible covalent conjugation method for peptides, proteins, and even live cells based on specific recognition between natural amino acid sequences. Two heptad sequences can specifically recognize each other and induce the formation of a disulfide bond between cysteine residues. We show the covalent bond formation and dissociation between peptides and proteins in cell-free conditions and on the surface of live cells. Because heptad sequences consist of natural amino acids, they are expressed in cells without additional preparation and can be used to selectively conjugate peptides, proteins, and cells.


Assuntos
Cisteína , Peptídeos , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos , Domínios Proteicos
5.
Phytother Res ; 29(10): 1634-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26179197

RESUMO

Lupeol is a triterpenoid commonly found in fruits and vegetables and is known to exhibit a wide range of biological activities, including antiinflammatory and anti-cancer effects. However, the effects of lupeol on acute pancreatitis specifically have not been well characterized. Here, we investigated the effects of lupeol on cerulein-induced acute pancreatitis in mice. Acute pancreatitis was induced via an intraperitoneal injection of cerulein (50 µg/kg). In the lupeol treatment group, lupeol was administered intraperitoneally (10, 25, or 50 mg/kg) 1 h before the first cerulein injection. Blood samples were taken to determine serum cytokine and amylase levels. The pancreas was rapidly removed for morphological examination and used in the myeloperoxidase assay, trypsin activity assay, and real-time reverse transcription polymerase chain reaction. In addition, we isolated pancreatic acinar cells using a collagenase method to examine the acinar cell viability. Lupeol administration significantly attenuated the severity of pancreatitis, as was shown by reduced pancreatic edema, and neutrophil infiltration. In addition, lupeol inhibited elevation of digestive enzymes and cytokine levels, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1, and interleukin (IL)-6. Furthermore, lupeol inhibited the cerulein-induced acinar cell death. In conclusion, these results suggest that lupeol exhibits protective effects on cerulein-induced acute pancreatitis.


Assuntos
Anti-Inflamatórios/farmacologia , Ceruletídeo , Pancreatite/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Extratos Vegetais , Doença Aguda , Amilases , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Injeções Intraperitoneais , Lipase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pancreatite/induzido quimicamente , Peroxidase/metabolismo , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
6.
Int Immunopharmacol ; 136: 112284, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38823179

RESUMO

Cathepsin B (CTSB) and inflammatory cytokines are critical in initiating and developing pancreatitis. Calcineurin, a central calcium (Ca2+)-responsive signaling molecule, mediates acinar cell death and inflammatory responses leading to pancreatitis. However, the detailed mechanisms for regulating CTSB activity and inflammatory cytokine production are unknown. Myricetin (MC) exhibits various biological activities, including anti-inflammatory effects. Here, we aimed to investigate MC effects on pancreatitis and the underlying mechanisms. Prophylactic and therapeutic MC treatment ameliorated the severity of cerulein-, L-arginine-, and PDL-induced acute pancreatitis (AP). The inhibition of CTSB activity by MC was mediated via decreased calcineurin activity and macrophage infiltration, not neutrophils infiltration, into the pancreas. Additionally, calcineurin activity inhibition by MC prevented the phosphorylation of Ca2+/CaM-dependent protein kinase kinase 2 (CaMKK2) during AP, resulting in the inhibition of CaMKIV phosphorylation and adenosine monophosphate-activated protein kinase (AMPK) dephosphorylation. Furthermore, MC reduced nuclear factor-κB activation by modulating the calcineurin-CaMKIV-IKKα/ß-Iκ-Bα and calcineurin-AMPK-sirtuin1 axes, resulting in reduced production of tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. Our results showed that MC alleviated AP severity by inhibiting acinar cell death and inflammatory responses, suggesting that MC as a calcineurin and CaMKK2 signaling modulator may be a potential treatment for AP.


Assuntos
Calcineurina , Catepsina B , Citocinas , Flavonoides , Camundongos Endogâmicos C57BL , Pancreatite , Animais , Pancreatite/tratamento farmacológico , Pancreatite/imunologia , Pancreatite/patologia , Pancreatite/induzido quimicamente , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Citocinas/metabolismo , Catepsina B/metabolismo , Camundongos , Masculino , Calcineurina/metabolismo , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Ceruletídeo , NF-kappa B/metabolismo , Pâncreas/patologia , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Transdução de Sinais/efeitos dos fármacos , Arginina/metabolismo , Modelos Animais de Doenças , Proteínas Quinases Ativadas por AMP/metabolismo
7.
Dig Dis Sci ; 58(10): 2908-17, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23918150

RESUMO

BACKGROUND/AIM: We have previously reported that bee venom (BV) has a protective role against acute pancreatitis (AP). However, the effects of apamin, the major compound of BV, on AP have not been determined. The aim of this study was to evaluate the effects of apamin on cerulein-induced AP. METHODS: AP was induced via intraperitoneal injection of supramaximal concentrations of the stable cholecystokinin analogue cerulein (50 µg/kg) every hour for 6 times. In the apamin treatment group, apamin was administered subcutaneously (10, 50, or 100 µg/kg) at both 18 and 1 h before the first cerulein injection. The mice were sacrificed at 6 h after the final cerulein injection. Blood samples were obtained to determine serum amylase and lipase levels, as well as cytokine production. The pancreas and lung were rapidly removed for morphologic and histological examination, myeloperoxidase (MPO) assay, and real-time reverse transcription-polymerase chain reaction. Furthermore, we isolated the pancreatic acinar cells to specify the role of apamin in AP. RESULTS: Pre-treatment with apamin inhibited histological damage, pancreatic weight/body weight ratio, serum level of amylase and lipase, MPO activity, and cytokine production. In addition, apamin treatment significantly inhibited cerulein-induced pancreatic acinar cell death. Furthermore, apamin treatment inhibited the cerulein-induced activation of c-Jun NH2-terminal kinases (JNK). CONCLUSIONS: These results could suggest that apamin could protect against AP by inhibition of JNK activation.


Assuntos
Apamina/farmacologia , Apamina/uso terapêutico , Ceruletídeo/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Pancreatite/induzido quimicamente , Pancreatite/prevenção & controle , Doença Aguda , Animais , Apamina/administração & dosagem , Ceruletídeo/administração & dosagem , Colecistocinina/análogos & derivados , Citocinas/metabolismo , Modelos Animais de Doenças , Injeções Intraperitoneais , Injeções Subcutâneas , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-21826187

RESUMO

Myrrh has been used as an antibacterial and anti-inflammatory agent. However, effect of myrrh on peritoneal macrophages and clinically relevant models of septic shock, such as cecal ligation and puncture (CLP), is not well understood. Here, we investigated the inhibitory effect and mechanism(s) of myrrh on inflammatory responses. Myrrh inhibited LPS-induced productions of inflammatory mediators such as nitric oxide, prostaglandin E(2), and tumor necrosis factor-α but not of interleukin (IL)-1ß and IL-6 in peritoneal macrophages. In addition, Myrrh inhibited LPS-induced activation of c-jun NH(2)-terminal kinase (JNK) but not of extracellular signal-regulated kinase (ERK), p38, and nuclear factor-κB. Administration of Myrrh reduced the CLP-induced mortality and bacterial counts and inhibited inflammatory mediators. Furthermore, administration of Myrrh attenuated CLP-induced liver damages, which were mainly evidenced by decreased infiltration of leukocytes and aspartate aminotransferase/alanine aminotransferase level. Taken together, these results provide the evidence for the anti-inflammatory and antibacterial potential of Myrrh in sepsis.

9.
Phytother Res ; 26(12): 1893-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22430952

RESUMO

Piperine, one of the main components of Piper longum Linn. and P. nigrum Linn., is a plant alkaloid with a long history of medicinal use. Piperine has been shown to modulate the immune response, but the mechanism underlying this modulation remains unknown. Here, we examined the effects of piperine on lipopolysaccharide (LPS)-induced inflammatory responses in bone-marrow-derived dendritic cells (BMDCs). Piperine significantly inhibited the expression of major histocompatibility complex class II, CD40 and CD86 in BMDCs in a dose-dependent manner. Furthermore, piperine treatment led to an increase in fluorescein-isothiocyanate-dextran uptake in LPS-treated dendritic cells and inhibited the production of tumour necrosis factor alpha and interleukin (IL)-12, but not IL-6. The inhibitory effects of piperine were mediated via suppression of extracellular signal-regulated kinases and c-Jun N-terminal kinases activation, but not p38 or nuclear factor-κB activation. These findings provide insight into the immunopharmacological role of piperine.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos , Camundongos , Fosforilação , Fator de Necrose Tumoral alfa/metabolismo
10.
J Investig Med ; 70(5): 1285-1292, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35078865

RESUMO

Chronic pancreatitis (CP) is a pathological fibroinflammatory syndrome of the pancreas. Currently, there are no therapeutic agents available for treating CP-associated pancreatic fibrosis. Fraxinus rhynchophylla (FR) reportedly exhibits anti-inflammatory, antioxidative and antitumor activities. Although FR possesses numerous properties associated with the regulation of diverse diseases, the effects of FR on CP remain unknown. Herein, we examined the effects of FR on CP. For CP induction, mice were intraperitoneally administered cerulein (50 µg/kg) 6 times a day, 4 days per week for 3 weeks. FR extract (100 or 400 mg/kg) or saline (control group) was intraperitoneally injected 1 hour before the first cerulein injection. After 3 weeks, the pancreas was harvested for histological analysis. In addition, pancreatic stellate cells (PSCs) were isolated to examine the antifibrogenic effects and regulatory mechanisms of FR. Administration of FR significantly inhibited histological damage in the pancreas, increased pancreatic acinar cell survival, decreased PSC activation and collagen deposition, and decreased pro-inflammatory cytokines. Moreover, FR treatment inhibited the expression of fibrotic mediators, such as α-smooth muscle actin (α-SMA), collagen, fibronectin 1, and decreased pro-inflammatory cytokines in isolated PSCs stimulated with transforming growth factor (TGF)-ß. Furthermore, FR treatment suppressed the phosphorylation of Smad 2/3 but not of Smad 1/5 in TGF-ß-stimulated PSCs. Collectively, these results suggest that FR ameliorates pancreatic fibrosis by inhibiting PSC activation during CP.


Assuntos
Fraxinus , Pancreatite Crônica , Animais , Ceruletídeo/metabolismo , Ceruletídeo/farmacologia , Ceruletídeo/uso terapêutico , Colágeno/metabolismo , Colágeno/farmacologia , Colágeno/uso terapêutico , Fibrose , Humanos , Camundongos , Pâncreas/patologia , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/metabolismo , Pancreatite Crônica/patologia , Casca de Planta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
11.
Am J Physiol Gastrointest Liver Physiol ; 301(4): G694-706, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21778460

RESUMO

Acute pancreatitis (AP) is an inflammatory disease involving acinar cell injury and rapid production and release of inflammatory cytokines, which play a dominant role in local pancreatic inflammation and systemic complications. 2',4',6'-Tris (methoxymethoxy) chalcone (TMMC), a synthetic chalcone derivative, displays potent anti-inflammatory effects. Therefore, we aimed to investigate whether TMMC might affect the severity of AP and pancreatitis-associated lung injury in mice. We used the cerulein hyperstimulation model of AP. Severity of pancreatitis was determined in cerulein-injected mice by histological analysis and neutrophil sequestration. The pretreatment of mice with TMMC reduced the severity of AP and pancreatitis-associated lung injury and inhibited several biochemical parameters (activity of amylase, lipase, trypsin, trypsinogen, and myeloperoxidase and production of proinflammatory cytokines). In addition, TMMC inhibited pancreatic acinar cell death and production of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 by inhibiting NF-κB and extracellular signal-regulated protein kinase 1/2 (ERK1/2) activation. Neutralizing antibodies for TNF-α, IL-1ß, and IL-6 inhibited cerulein-induced cell death in isolated pancreatic acinar cells. Moreover, pharmacological blockade of NF-κB/ERK1/2 reduced acinar cell death and production of TNF-α, IL-1ß, and IL-6 in isolated pancreatic acinar cells. In addition, posttreatment of mice with TMMC showed reduced severity of AP and lung injury. Our results suggest that TMMC may reduce the complications associated with pancreatitis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Chalconas/uso terapêutico , Lesão Pulmonar/prevenção & controle , Pancreatite/tratamento farmacológico , Amilases/sangue , Animais , Ceruletídeo , Interleucina-1beta/sangue , Interleucina-6/sangue , Lipase/sangue , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Pancreatite/induzido quimicamente , Pancreatite/complicações , Pancreatite/patologia , Peroxidase/metabolismo , Fator de Necrose Tumoral alfa/sangue
12.
Biochem Biophys Res Commun ; 410(3): 382-8, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21663734

RESUMO

Piperine is a phenolic component of black pepper (Piper nigrum) and long pepper (Piper longum), fruits used in traditional Asian medicine. Our previous study showed that piperine inhibits lipopolysaccharide-induced inflammatory responses. In this study, we investigated whether piperine reduces the severity of cerulein-induced acute pancreatitis (AP). Administration of piperine reduced histologic damage and myeloperoxidase (MPO) activity in the pancreas and ameliorated many of the examined laboratory parameters, including the pancreatic weight (PW) to body weight (BW) ratio, as well as serum levels of amylase and lipase and trypsin activity. Furthermore, piperine pretreatment reduced the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 during cerulein-induced AP. In accordance with in vivo results, piperine reduced cell death, amylase and lipase activity, and cytokine production in isolated cerulein-treated pancreatic acinar cells. In addition, piperine inhibited the activation of mitogen-activated protein kinases (MAPKs). These findings suggest that the anti-inflammatory effect of piperine in cerulein-induced AP is mediated by inhibiting the activation of MAPKs. Thus, piperine may have a protective effect against AP.


Assuntos
Alcaloides/uso terapêutico , Anti-Inflamatórios não Esteroides/uso terapêutico , Benzodioxóis/uso terapêutico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Pancreatite/tratamento farmacológico , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/uso terapêutico , Animais , Apoptose , Ceruletídeo/toxicidade , Ativação Enzimática/efeitos dos fármacos , Interleucina-1beta/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Pancreatite/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores
13.
ACS Appl Mater Interfaces ; 13(24): 28962-28974, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34107679

RESUMO

Expansion microscopy (ExM) is a technique in which swellable hydrogel-embedded biological samples are physically expanded to effectively increase imaging resolution. Here, we develop thermoresponsive reversible ExM (T-RevExM), in which the expansion factor can be thermally adjusted in a reversible manner. In this method, samples are embedded in thermoresponsive hydrogels and partially digested to allow for reversible swelling of the sample-gel hybrid in a temperature-dependent manner. We first synthesized hydrogels exhibiting lower critical solution temperature (LCST)- and upper critical solution temperature (UCST)-phase transition properties with N-alkyl acrylamide or sulfobetaine monomers, respectively. We then formed covalent hybrids between the LCST or UCST hydrogel and biomolecules across the cultured cells and tissues. The resulting hybrid could be reversibly swelled or deswelled in a temperature-dependent manner, with LCST- and UCST-based hybrids negatively and positively responding to the increase in temperature (termed thermonegative RevExM and thermopositive RevExM, respectively). We further showed reliable imaging of both unexpanded and expanded cells and tissues and demonstrated minimal distortions from the original sample using conventional confocal microscopy. Thus, T-RevExM enables easy adjustment of the size of biological samples and therefore the effective magnification and resolution of the sample, simply by changing the sample temperature.


Assuntos
Hidrogéis/química , Microscopia/métodos , Resinas Acrílicas/química , Animais , Encéfalo/anatomia & histologia , Células HeLa , Humanos , Camundongos , Transição de Fase , Temperatura
14.
Pancreas ; 49(1): 89-95, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31856083

RESUMO

OBJECTIVES: In this study, we investigated the anti-inflammatory effects of silymarin on cerulein-induced acute pancreatitis (AP) in mice. METHODS: Cerulein (50 µg/kg) was injected intraperitoneally once hourly for 6 hours to induce AP. To investigate the prophylactic effects of silymarin, dimethyl sulfoxide or silymarin (25, 50, and 100 mg/kg) was injected intraperitoneally 1 hour before cerulein injection. To investigate the therapeutic effects of silymarin, dimethyl sulfoxide or silymarin (100 mg/kg) was injected intraperitoneally 1, 3, or 5 hours after the first cerulein injection. Blood, pancreas, and lungs were harvested 6 hours after the last cerulein injection. RESULTS: Pre- and posttreatment with silymarin decreased the pancreas weight/body weight ratio and serum amylase activity. Furthermore, silymarin treatment inhibited pancreas and lung injury and neutrophil infiltration during cerulein-induced AP. In addition, silymarin inhibited increased secretion of proinflammatory cytokines such as interleukin 1ß, interleukin 6, and tumor necrosis factor α. Finally, mitogen-activated protein kinases (MAPKs) and nuclear factor-κB were activated by cerulein, and only p38 in MAPK was inhibited by silymarin. CONCLUSIONS: These findings suggest that silymarin attenuates the severity of AP through inhibition of p38 MAPKs and that silymarin could be a potential prophylactic and therapeutic agent for the treatment of AP.


Assuntos
Pâncreas/efeitos dos fármacos , Pancreatite/prevenção & controle , Índice de Gravidade de Doença , Silimarina/farmacologia , Doença Aguda , Amilases/sangue , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Ceruletídeo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/metabolismo , Substâncias Protetoras/administração & dosagem , Substâncias Protetoras/farmacologia , Silimarina/administração & dosagem
15.
Mol Med Rep ; 21(1): 258-266, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746359

RESUMO

The major role of inner medullary collecting duct (IMCD) cells is to maintain water and sodium homeostasis. In addition to the major role, it also participates in the protection of renal and systemic inflammation. Although IMCD cells could take part in renal and systemic inflammation, investigations on renal inflammation in IMCD cells have rarely been reported. Although berberine (BBR) has been reported to show diverse pharmacological effects, its anti­inflammatory and protective effects on IMCD cells have not been studied. Therefore, in the present study, we examined the anti­inflammatory and protective effects of BBR in mouse IMCD­3 (mIMCD­3) cells against lipopolysaccharide (LPS). An MTT assay was carried out to investigate the toxicity of BBR on mIMCD­3 cells. Reverse transcription quantitative­PCR and western blotting were performed to analysis pro­inflammatory molecules and cytokines. Mechanisms of BBR were examined by western blotting and immunocytochemistry. According to previous studies, pro­inflammatory molecules, such as inducible nitric oxide synthase and cyclooxygenase­2, and pro­inflammatory cytokines, such as interleukin (IL)­1ß, IL­6 and tumor necrosis factor­α are increased in LPS­exposed mIMCD­3 cells. However, the production of these pro­inflammatory molecules is significantly inhibited by treatment with BBR. In addition, BBR inhibited translocation of nuclear factor (NF)­κB p65 from the cytosol to the nucleus, and degradation of inhibitory κ­Bα in LPS­exposed mIMCD­3 cells. In conclusion, BBR could inhibit renal inflammatory responses via inhibition of NF­κB signaling and ultimately contribute to amelioration of renal injury during systemic inflammation.


Assuntos
Berberina/farmacologia , Inflamação/tratamento farmacológico , Rim/efeitos dos fármacos , Fator de Transcrição RelA/genética , Animais , Linhagem Celular , Ciclo-Oxigenase 2/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucina-1beta/genética , Interleucina-6/genética , Rim/patologia , Lipopolissacarídeos/toxicidade , Camundongos , NF-kappa B/genética , Óxido Nítrico Sintase/genética , Transdução de Sinais/efeitos dos fármacos
16.
Am J Chin Med ; 48(4): 987-1003, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431181

RESUMO

Our previous report revealed that Gardenia jasminoides (GJ) has protective effects against acute pancreatitis. So, we examined whether aqueous extract of GJ has anti-inflammation and antifibrotic effects even against cerulein-induced chronic pancreatitis (CP). CP was induced in mice by an intraperitoneal injection of a stable cholecystokinin (CCK) analogue, cerulein, six times a day, four days per week for three weeks. GJ extract (0.1 or 1[Formula: see text]g/kg) or saline (control group) were intraperitoneally injected 1[Formula: see text]h before first cerulein injection. After three weeks of stimulation, the pancreas was harvested for the examination of several fibrotic parameters. In addition, pancreatic stellate cells (PSCs) were isolated using gradient methods to examine the antifibrogenic effects of GJ. In the cerulein-induced CP mice, the histological features of the pancreas showed severe tissue damage such as enlarged interstitial spaces, inflammatory cell infiltrate and glandular atrophy, and tissue fibrosis. However, treatment of GJ reduced the severity of CP such as pancreatic edema and inflammatory cell infiltration. Furthermore, treatment of GJ increased pancreatic acinar cell survival, and reduced pancreatic fibrosis and activation of PSC in vivo and in vitro. In addition, GJ treatment inhibited the activation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) in the PSCs. These results suggest that GJ attenuated the severity of CP and the pancreatic fibrosis by inhibiting JNK and ERK activation during CP.


Assuntos
Ceruletídeo/efeitos adversos , Gardenia/química , Pancreatite Crônica/tratamento farmacológico , Pancreatite Crônica/prevenção & controle , Fitoterapia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Animais , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Fibrose , Injeções Intraperitoneais , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pâncreas/patologia , Células Estreladas do Pâncreas/patologia , Pancreatite Crônica/induzido quimicamente , Pancreatite Crônica/patologia , Extratos Vegetais/isolamento & purificação
17.
Int Immunopharmacol ; 88: 106900, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32829089

RESUMO

Acute pancreatitis (AP) refers to inflammation in the pancreas, which may lead to death in severe cases. Coenzyme Q10 (Q10), generally known to generate energy, plays an important role as an anti-oxidant and anti-inflammatory effector. Here, we showed the effect of Q10 on inflammatory response in murine AP model. For this study, we induced AP by injection of cerulein intraperitoneally or pancreatic duct ligation (PDL) in mice. The level of cytokines and digestive enzymes were measured in pancreas, and blood. All pancreatic tissues were excised for investigation such as histological changes, infiltration of immune cells. Administration of Q10 attenuated the severity of AP and its associated pulmonary complication as shown by reduction of acinar cell death, parenchymal edema, inflammatory cell infiltration and alveolar thickening in both cerulein-induced AP and PDL-induced AP. Moreover, reduction of the cytokines such as interleukin (IL)-1ß, IL-6 and tumor necrosis factor (TNF)-α were observed in pancreas and pancreatic acinar cells by Q10. Furthermore, Q10 reduced the infiltration of immune cells such as monocytes and neutrophils and augmentation of chemokines such as CC chemokine-2 (CCL2) and C-X-C chemokine-2 (CXCL2) in pancreas of AP mice. In addition, Q10 deactivates the phosphorylation of extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in pancreas. In conclusion, these observations suggest that Q10 could attenuate the pancreatic damage and its associated pulmonary complications via inhibition of inflammatory cytokines and inflammatory cell infiltration and that the deactivation of ERK and JNK by Q10 might contribute to the attenuation of AP.


Assuntos
Anti-Inflamatórios/uso terapêutico , Pancreatite/tratamento farmacológico , Ubiquinona/análogos & derivados , Animais , Anti-Inflamatórios/farmacologia , Ceruletídeo , Citocinas/genética , Citocinas/imunologia , Feminino , Pulmão/efeitos dos fármacos , Pulmão/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Infiltração de Neutrófilos/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Pâncreas/patologia , Pancreatite/induzido quimicamente , Pancreatite/imunologia , Pancreatite/patologia , Ubiquinona/farmacologia , Ubiquinona/uso terapêutico
18.
Int Immunopharmacol ; 69: 225-234, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30738992

RESUMO

Heme oxygenase-1 (HO-1) has an anti-inflammatory action in acute pancreatitis (AP). However, its mechanism of action and natural compounds/drugs to induce HO-1 in pancreas are not well understood. In this study, we investigated the regulatory mechanisms of HO-1 during AP using desoxo-narchinol-A (DN), the natural compound inducing HO-1 in the pancreas. Female C57/BL6 Mice were intraperitoneally injected with supramaximal concentrations of cerulein (50 µg/kg) hourly for 6 h to induce AP. DMSO or DN was administered intraperitoneally, then mice were sacrificed 6 h after the final cerulein injection. Administration of DN increased pancreatic HO-1 expression through activation of activating protein-1, mediated by mitogen-activated protein kinases. Furthermore, DN treatment reduced the pancreatic weight-to-body weight ratio as well as production of digestive enzymes and pro-inflammatory cytokines. Inhibition of HO-1 by tin protoporphyrin IX abolished the protective effects of DN on pancreatic damage. Additionally, DN treatment inhibited neutrophil infiltration into the pancreas via regulation of chemokine (C-X-C motif) ligand 2 (CXCL2) by HO-1. Our results suggest that DN is an effective inducer of HO-1 in the pancreas, and that HO-1 regulates neutrophil infiltration in AP via CXCL2 inhibition.


Assuntos
Quimiocina CXCL2/metabolismo , Heme Oxigenase-1/metabolismo , Neutrófilos/fisiologia , Pâncreas/metabolismo , Pancreatite/metabolismo , Doença Aguda , Amilases/sangue , Animais , Ceruletídeo/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Naftóis/metabolismo , Infiltração de Neutrófilos , Pâncreas/patologia , Pancreatite/patologia
19.
Mol Med Rep ; 20(4): 3709-3718, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31485676

RESUMO

Chronic pancreatitis (CP) is characterized by recurrent pancreatic injury, resulting in inflammation and fibrosis. Currently, there are no drugs for the treatment of pancreatic fibrosis associated with CP. Piperine, a natural alkaloid found in black pepper, has been reported to show anti­inflammatory, anti­oxidative, and antitumor activities. Although piperine exhibits numerous properties in regards to the regulation of diverse diseases, the effects of piperine on CP have not been established. To investigate the effects of piperine on CP in vivo, we induced CP in mice through the repetitive administration of cerulein (50 µg/kg) six times at 1­h intervals, 5 times per week, for a total of 3 weeks. In the pre­treatment groups, piperine (1, 5, or 10 mg/kg) or corn oil were administrated orally at 1 h before the first cerulein injection, once a day, 5 times a week, for a total of 3 weeks. In the post­treatment groups, piperine (10 mg/kg) or corn oil was administered orally at 1 or 2 week after the first cerulein injection. Pancreases were collected for histological analysis. In addition, pancreatic stellate cells (PSCs) were isolated to examine the anti­fibrogenic effects and regulatory mechanisms of piperine. Piperine treatment significantly inhibited histological damage in the pancreas, increased the pancreatic acinar cell survival, reduced collagen deposition and reduced pro­inflammatory cytokines and chemokines. In addition, piperine treatment reduced the expression of fibrotic mediators, such as α­smooth muscle actin (α­SMA), collagen, and fibronectin 1 in the pancreas and PSCs. Moreover, piperine treatment reduced the production of transforming growth factor (TGF)­ß in the pancreas and PSCs. Furthermore, piperine treatment inhibited TGF­ß­induced pSMAD2/3 activation but not pSMAD1/5 in the PSCs. These findings suggest that piperine treatment ameliorates pancreatic fibrosis by inhibiting TGF­ß/SMAD2/3 signaling during CP.


Assuntos
Alcaloides/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Benzodioxóis/uso terapêutico , Pancreatite Crônica/tratamento farmacológico , Piperidinas/uso terapêutico , Alcamidas Poli-Insaturadas/uso terapêutico , Proteínas Smad/imunologia , Fator de Crescimento Transformador beta/imunologia , Animais , Modelos Animais de Doenças , Feminino , Fibrose , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/efeitos dos fármacos , Pâncreas/imunologia , Pâncreas/patologia , Pancreatite Crônica/imunologia , Pancreatite Crônica/patologia , Transdução de Sinais/efeitos dos fármacos
20.
Int J Mol Med ; 44(4): 1563-1573, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432106

RESUMO

Acute pancreatitis (AP) is an inflammatory disease of the pancreas. Icariin (ICA), a flavonoid glycoside, has been reported to have several pharmacological effects; however, the anti­inflammatory effects of ICA against AP require further study. Therefore, we aimed to investigate the effect of ICA on cerulein­induced AP. In the present study, AP was induced by intraperitoneally administering a supramaximal concentration of cerulein (50 µg/kg/h) for 6 h. ICA was also administered intraperitoneally, and mice were sacrificed 6 h after the final cerulein injection. Blood samples were collected to determine serum amylase and lipase levels. The pancreas and lung were rapidly removed for histological examination, and the analysis of myeloperoxidase activity. In addition, reverse transcription­quantitative polymerase chain reaction was conducted to analyze the expression of inflammatory cytokines in pancreatic tissues. Our results revealed that the administration of ICA prevented an increase in the pancreas weight/body weight ratio of mice and serum digestive enzyme levels. ICA treatment also inhibited cerulein­induced histological injury and neutrophil infiltration of the pancreas and lung. In addition, ICA suppressed the production of pro­inflammatory cytokines, including interleukin (IL)­1ß, IL­6 and tumor necrosis factor­α in the pancreas. Furthermore, ICA administration was observed to inhibit p38 activation during cerulein­induced AP. Inhibition of p38 activation resulted in alleviated pancreatitis. Collectively, our results suggested that ICA exhibits anti­inflammatory effects in cerulein­induced AP via the inhibition of p38.


Assuntos
Ceruletídeo/efeitos adversos , Flavonoides/farmacologia , Pancreatite/etiologia , Pancreatite/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Amilases/sangue , Animais , Biomarcadores , Modelos Animais de Doenças , Feminino , Lipase/sangue , Lipase/metabolismo , Camundongos , NF-kappa B/metabolismo , Pancreatite/diagnóstico , Pancreatite/tratamento farmacológico , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa