Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Nature ; 592(7855): 551-557, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33883734

RESUMO

Solid-state lithium (Li)-air batteries are recognized as a next-generation solution for energy storage to address the safety and electrochemical stability issues that are encountered in liquid battery systems1-4. However, conventional solid electrolytes are unsuitable for use in solid-state Li-air systems owing to their instability towards lithium metal and/or air, as well as the difficulty in constructing low-resistance interfaces5. Here we present an integrated solid-state Li-air battery that contains an ultrathin, high-ion-conductive lithium-ion-exchanged zeolite X (LiX) membrane as the sole solid electrolyte. This electrolyte is integrated with cast lithium as the anode and carbon nanotubes as the cathode using an in situ assembly strategy. Owing to the intrinsic chemical stability of the zeolite, degeneration of the electrolyte from the effects of lithium or air is effectively suppressed. The battery has a capacity of 12,020 milliamp hours per gram of carbon nanotubes, and has a cycle life of 149 cycles at a current density of 500 milliamps per gram and at a capacity of 1,000 milliamp hours per gram. This cycle life is greater than those of batteries based on lithium aluminium germanium phosphate (12 cycles) and organic electrolytes (102 cycles) under the same conditions. The electrochemical performance, flexibility and stability of zeolite-based Li-air batteries confer practical applicability that could extend to other energy-storage systems, such as Li-ion, Na-air and Na-ion batteries.

2.
J Am Chem Soc ; 146(2): 1305-1317, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38169369

RESUMO

Aprotic lithium-oxygen (Li-O2) batteries are considered to be a promising alternative option to lithium-ion batteries for high gravimetric energy storage devices. However, the sluggish electrochemical kinetics, the passivation, and the structural damage to the cathode caused by the solid discharge products have greatly hindered the practical application of Li-O2 batteries. Herein, the nonsolid-state discharge products of the off-stoichiometric Li1-xO2 in the electrolyte solutions are achieved by iridium (Ir) single-atom-based porous organic polymers (termed as Ir/AP-POP) as a homogeneous, soluble electrocatalyst for Li-O2 batteries. In particular, the numerous atomic active sites act as the main nucleation sites of O2-related discharge reactions, which are favorable to interacting with O2-/LiO2 intermediates in the electrolyte solutions, owing to the highly similar lattice-matching effect between the in situ-formed Ir3Li and LiO2, achieving a nonsolid LiO2 as the final discharge product in the electrolyte solutions for Li-O2 batteries. Consequently, the Li-O2 battery with a soluble Ir/AP-POP electrocatalyst exhibits an ultrahigh discharge capacity of 12.8 mAh, an ultralow overpotential of 0.03 V, and a long cyclic life of 700 h with the carbon cloth cathode. The manipulation of nonsolid discharge products in aprotic Li-O2 batteries breaks the traditional growth mode of Li2O2, bringing Li-O2 batteries closer to being a viable technology.

3.
Br J Cancer ; 130(8): 1356-1364, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38355839

RESUMO

BACKGROUND: We aimed to redefine Immune checkpoint inhibitors (ICIs)-responsive "hot" TME and develop a corresponding stratification model to maximize ICIs-efficacy in Hepatocellular Carcinoma (HCC). METHODS: Hypoxic scores were designed, and the relevance to immunotherapy responses were validated in pan-cancers through single cell analysis. Multi-omics analysis using the hypoxic scores and immune infiltrate abundance was performed to redefine the ICIs-responsive TME subtype in HCC patients from TCGA (n = 363) and HCCDB database (n = 228). The immune hypoxic stress index (IHSI) was constructed to stratify the ICIs-responsive TME subtype, with exploring biological mechanism in vitro and in vivo. MRI-radiomics models were built for clinical applicability. RESULTS: The hypoxic scores were lower in the dominant cell-subclusters of responders in pan-cancers. The higher immune infiltrate-normoxic (HIN) subtype was redefined as the ICIs-responsive TME. Stratification of the HIN subtype using IHSI effectively identified ICIs-responders in Melanoma (n = 122) and urological cancer (n = 22). TRAF3IP3, the constituent gene of IHSI, was implicated in ICIs-relevant "immune-hypoxic" crosstalk by stimulating MAVS/IFN-I pathway under normoxic condition. MRI-radiomics models assessing TRAF3IP3 with HIF1A expression (AUC > 0.80) screened ICIs-Responders in HCC cohort (n = 75). CONCLUSION: The hypoxic-immune stratification redefined ICIs-responsive TME and provided MRI-Radiomics models for initial ICIs-responders screening, with IHSI facilitating further identification.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/genética , Radiômica , Microambiente Tumoral , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Hipóxia , Imageamento por Ressonância Magnética
4.
Small ; : e2401658, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693074

RESUMO

The formation process of biofouling is actually a 4D process with both spatial and temporal dimensions. However, most traditional antifouling coatings, including slippery liquid-infused porous surface (SLIPS), are limited to performing antifouling process in the 2D coating plane. Herein, inspired by the defensive behavior of sea anemones' wielding toxic tentacles, a "4D SLIPS" (FSLIPS) is constructed with biomimetic cilia via a magnetic field self-assembly method for antifouling. The bionic cilia move in 3D space driven by an external magnetic field, thereby preventing the attachment of microorganisms. The FSLIPS releases the gaseous antifoulant (nitric oxide) at 1D time in response to light, thereby achieving a controllable biocide effect on microorganisms. The FSLIPS regulates the movement of cilia via the external magnetic field, and controls the release of NO overtime via the light response, so as to adjust the antifouling modes on demand during the day or night. The light/magnetic response mechanism endow the FSLIPS with the ability to adjust the antifouling effect in the 4D dimension of 1D time and 3D space, effectively realizing the intelligence, multi-dimensionality and precision of the antifouling process.

5.
Mol Carcinog ; 63(6): 1013-1023, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38380955

RESUMO

Esophageal squamous cell carcinoma (ESCC) stands as a highly lethal malignancy characterized by pronounced recurrence and metastasis, resulting in a bleak 5-year survival rate. Despite extensive investigations, encompassing genome-wide association studies, the identification of robust prognostic markers has remained elusive. In this study, leveraging four independent data sets comprising 404 ESCC patients, we conducted a systematic analysis to unveil pivotal genes influencing overall survival. our meta-analysis identified 278 genes significantly associated with ESCC prognosis. Further exploration of the prognostic landscape involved an examination of expression quantitative trait loci for these genes, leading to the identification of six tag single nucleotide polymorphisms predictive of overall survival in a cohort of 904 ESCC patients. Notably, functional annotation spotlighted rs11227223, residing in the enhancer region of nuclear paraspeckle assembly transcript 1 (NEAT1), as a crucial variant likely exerting a substantive biological role. Through a series of biochemistry experiments, we conclusively demonstrated that the rs11227223-T allele, indicative of a poorer prognosis, augmented NEAT1 expression. Our results underscore the substantive role of NEAT1 and its regulatory variant in prognostic predictions for ESCC. This comprehensive analysis not only advances our comprehension of ESCC prognosis but also unveils a potential avenue for targeted interventions, offering promise for enhanced clinical outcomes.


Assuntos
Biomarcadores Tumorais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Polimorfismo de Nucleotídeo Único , Humanos , Prognóstico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/mortalidade , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , RNA Longo não Codificante/genética , Feminino , Masculino
6.
Cancer Control ; 31: 10732748241250208, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716756

RESUMO

Nasopharyngeal Carcinoma (NC) refers to the malignant tumor that occurs at the top and side walls of the nasopharyngeal cavity. The NC incidence rate always dominates the first among the malignant tumors of the ear, nose and throat, and mainly occurs in Asia. NC cases are mainly concentrated in southern provinces in China, with about 4 million existing NC. With the pollution of environment and pickled diet, and the increase of life pressure, the domestic NC incidence rate has reached 4.5-6.5/100000 and is increasing year by year. It was reported that the known main causes of NC include hereditary factor, genetic mutations, and EB virus infection, common clinical symptoms of NC include nasal congestion, bloody mucus, etc. About 90% of NC is highly sensitive to radiotherapy which is regard as the preferred treatment method; However, for NC with lower differentiation, larger volume, and recurrence after treatment, surgical resection and local protons and heavy ions therapy are also indispensable means. According to reports, the subtle heterogeneity and diversity exists in some NC, with about 80% of NC undergone radiotherapy and about 25% experienced recurrence and death within five years after radiotherapy in China. Therefore, screening the NC population with suspected recurrence after concurrent chemoradiotherapy may improve survival rates in current clinical decision-making.


NC is one of the prevalent malignancies of the head and neck region with poor prognosis. The aim of this study is to establish a predictive model for assessing NC prognosis using clinical and MR radiomics data.


Assuntos
Quimiorradioterapia , Imageamento por Ressonância Magnética , Neoplasias Nasofaríngeas , Recidiva Local de Neoplasia , Humanos , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/diagnóstico por imagem , Quimiorradioterapia/métodos , Recidiva Local de Neoplasia/epidemiologia , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos , Masculino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Feminino , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/diagnóstico por imagem , Adulto , China/epidemiologia , Metástase Neoplásica , Idoso , Radiômica
7.
Artigo em Inglês | MEDLINE | ID: mdl-38904614

RESUMO

Background: The effect of traditional disposable infant urine collectors is not ideal for female newborns. Due to the poor adhesion of the traditional urine collection bag, it does not meet the physiological and anatomical characteristics of female newborns. Therefore, it is necessary to adopt effective nursing in urine specimen collection in newborn female infants. Objective: To explore the effect of plan-do-check action cycle nursing protocol on improving the accuracy of urine specimen collection in newborn female infants. Design: This was a randomized controlled study. Setting: This study was carried out in the Department of Pediatrics, Strategic Support Force Medical Center. Participants: A total of 120 female newborns admitted to our hospital from January 2021 to June 2022 were selected and divided into a control group and a study group, with 60 cases in each group. Interventions: The control group collected urine samples by routine methods, which used the traditional disposable urine bag collection method. The study group collected urine samples using the plan-do-check action cycle nursing mode. Primary Outcome Measures: (1) success rate of urine collection, collection times, and sample contamination rate (2) cleanliness of the vaginal opening (3) satisfaction of urine collection (4) retention time of urine samples and (5) urine pondus hydrogenii values. Results: Compared to the control group, the success rate of urine collection in the study group was higher, the collection times and specimen contamination rate were significantly lower, the time for collecting urine samples in the study group was shorter, the cleanliness of female vaginal opening in the study group was significantly better, the proportion of female urine pondus hydrogenii 6-7 in the study group was significantly higher (all P < .05). Conclusion: The application of the plan-do-check action cycle management mode in the urine samples of newborn female infants can not only effectively improve the success rate of collection but also improve the cleanliness of the vaginal mouth and make the test results more accurate.

8.
BMC Oral Health ; 24(1): 569, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745274

RESUMO

BACKGROUND: Extracellular matrix (ECM) protein malfunction or defect may lead to temporomandibular joint osteoarthritis (TMJ OA). Dentin sialophophoprotein (DSPP) is a mandibular condylar cartilage ECM protein, and its deletion impacted cell proliferation and other extracellular matrix alterations of postnatal condylar cartilage. However, it remains unclear if long-term loss of function of DSPP leads to TMJ OA. The study aimed to test the hypothesis that long-term haploinsufficiency of DSPP causes TMJ OA. MATERIALS AND METHODS: To determine whether Dspp+/- mice exhibit TMJ OA but no severe tooth defects, mandibles of wild-type (WT), Dspp+/-, and Dspp homozygous (Dspp-/-) mice were analyzed by Micro-computed tomography (micro-CT). To characterize the progression and possible mechanisms of osteoarthritic degeneration over time in Dspp+/- mice over time, condyles of Dspp+/- and WT mice were analyzed radiologically, histologically, and immunohistochemically. RESULTS: Micro-CT and histomorphometric analyses revealed that Dspp+/- and Dspp-/- mice had significantly lower subchondral bone mass, bone volume fraction, bone mineral density, and trabecular thickness compared to WT mice at 12 months. Interestingly, in contrast to Dspp-/- mice which exhibited tooth loss, Dspp+/- mice had minor tooth defects. RNA sequencing data showed that haplodeficency of DSPP affects the biological process of ossification and osteoclast differentiation. Additionally, histological analysis showed that Dspp+/- mice had condylar cartilage fissures, reduced cartilage thickness, decreased articular cell numbers and severe subchondral bone cavities, and with signs that were exaggerated with age. Radiographic data showed an increase in subchondral osteoporosis up to 18 months and osteophyte formation at 21 months. Moreover, Dspp+/- mice showed increased distribution of osteoclasts in the subchondral bone and increased expression of MMP2, IL-6, FN-1, and TLR4 in the mandibular condylar cartilage. CONCLUSIONS: Dspp+/- mice exhibit TMJ OA in a time-dependent manner, with lesions in the mandibular condyle attributed to hypomineralization of subchondral bone and breakdown of the mandibular condylar cartilage, accompanied by upregulation of inflammatory markers.


Assuntos
Proteínas da Matriz Extracelular , Osteoartrite , Fosfoproteínas , Sialoglicoproteínas , Transtornos da Articulação Temporomandibular , Microtomografia por Raio-X , Animais , Osteoartrite/patologia , Osteoartrite/diagnóstico por imagem , Osteoartrite/genética , Camundongos , Proteínas da Matriz Extracelular/metabolismo , Transtornos da Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/diagnóstico por imagem , Transtornos da Articulação Temporomandibular/etiologia , Transtornos da Articulação Temporomandibular/genética , Fosfoproteínas/genética , Côndilo Mandibular/patologia , Côndilo Mandibular/diagnóstico por imagem , Articulação Temporomandibular/patologia , Articulação Temporomandibular/diagnóstico por imagem
9.
Angew Chem Int Ed Engl ; 63(17): e202400132, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38409997

RESUMO

Li-CO2 batteries have received significant attention owing to their advantages of combining greenhouse gas utilization and energy storage. However, the high kinetic barrier between gaseous CO2 and the Li2CO3 product leads to a low operating voltage (<2.5 V) and poor energy efficiency. In addition, the reversibility of Li2CO3 has always been questioned owing to the introduction of more decomposition paths caused by its higher charging plateau. Here, a novel "trinity" Li-CO2 battery system was developed by synergizing CO2, soluble redox mediator (2,2,6,6-tetramethylpiperidoxyl, as TEM RM), and reduced graphene oxide electrode to enable selective conversion of CO2 to Li2C2O4. The designed Li-CO2 battery exhibited an output plateau reaching up to 2.97 V, higher than the equilibrium potential of 2.80 V for Li2CO3, and an ultrahigh round-trip efficiency of 97.1 %. The superior performance of Li-CO2 batteries is attributed to the TEM RM-mediated preferential growth mechanism of Li2C2O4, which enhances the reaction kinetics and rechargeability. Such a unique design enables batteries to cope with sudden CO2-deficient environments, which provides an avenue for the rationally design of CO2 conversion reactions and a feasible guide for next-generation Li-CO2 batteries.

10.
Angew Chem Int Ed Engl ; 63(5): e202317949, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38078904

RESUMO

Solid-state lithium (Li) batteries promise both high energy density and safety while existing solid-state electrolytes (SSEs) fail to satisfy the rigorous requirements of battery operations. Herein, novel polyoxometalate SSEs, Li3 PW12 O40 and Li3 PMo12 O40 , are synthesized, which exhibit excellent interfacial compatibility with electrodes and chemical stability, overcoming the limitations of conventional SSEs. A high ionic conductivity of 0.89 mS cm-1 and a low activation energy of 0.23 eV are obtained due to the optimized three-dimensional Li+ migration network of Li3 PW12 O40 . Li3 PW12 O40 exhibits a wide window of electrochemical stability that can both accommodate the Li anode and high-voltage cathodes. As a result, all-solid-state Li metal batteries fabricated with Li/Li3 PW12 O40 /LiNi0.5 Co0.2 Mn0.3 O2 display a stable cycling up to 100 cycles with a cutoff voltage of 4.35 V and an areal capacity of more than 4 mAh cm-2 , as well as a cost-competitive SSEs price of $5.68 kg-1 . Moreover, Li3 PMo12 O40 homologous to Li3 PW12 O40 was obtained via isomorphous substitution, which formed a low-resistance interface with Li3 PW12 O40 . Applications of Li3 PW12 O40 and Li3 PMo12 O40 in Li-air batteries further demonstrate that long cycle life (650 cycles) can be achieved. This strategy provides a facile, low-cost strategy to construct efficient and scalable solid polyoxometalate electrolytes for high-energy solid-state Li metal batteries.

11.
Anal Chem ; 95(38): 14203-14208, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37656042

RESUMO

Sensitive and multiple detection of the biomarkers of type 1 diabetes mellitus (T1DM) is vital to the early diagnosis and clinical treatment of T1DM. Herein, we developed a SERS-based biosensor using polyvinylidene fluoride (PVDF) membranes as a flexible support for the detection of glutamic acid decarboxylase antibodies (GADA) and insulin autoantibodies (IAA). Two kinds of silver-gold core-shell nanotags embedded with Raman probes and attached with GADA or IAA antibodies were synthesized to capture the targets, enabling highly sensitive and highly selective detection of GADA and IAA. The embedded Raman probes sandwiched between silver and gold layers guaranteed spectral stability and reliability. Moreover, the utilization of two Raman probes enables simultaneous and multiplexing detection of both GADA and IAA, improving the detection accuracy for T1DM. The proposed SERS-based method has been proven feasible for clinical sample detection, demonstrating its great potential in sensitive, reliable, and rapid diagnosis of T1DM.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus Tipo 1 , Nanopartículas Metálicas , Humanos , Diabetes Mellitus Tipo 1/diagnóstico , Prata , Reprodutibilidade dos Testes , Biomarcadores , Anticorpos , Ouro , Análise Espectral Raman/métodos
12.
Mol Carcinog ; 62(7): 991-1000, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37042568

RESUMO

All-trans retinoic acid (ATRA) is the natural and synthetic analogue of vitamin A, playing an essential tumor suppressive role in multiple cancers including the esophageal squamous cell carcinoma (ESCC). Cytochrome P450 family 26 subfamily B member 1 (CYP26B1) exerts a critical regulator of ATRA levels through specific inactivation of ATRA to hydroxylated forms. Our previous exome-wide analyses revealed a rare missense variant in CYP26B1 significantly associated with ESCC risk in the Chinese population. However, it is still unclear whether there are common variants in CYP26B1 affect the susceptibility of ESCC and the tumor promotion role of CYP26B1 in vivo. In this research, we conducted a two-stage case-control study comprised of 5057 ESCC cases and 5397 controls, followed by a series of biochemical experiments to explore the function of CYP26B1 and its common variants in the tumorigenesis of ESCC. Intriguingly, we identified a missense variant rs2241057[A>G] in the fourth exon of CYP26B1 significantly associated with the ESCC risk (combined odds ratio = 1.28; 95% confidence interval = 1.15-1.42; p = 2.96 × 10-6 ). Through further functional analysis, we demonstrated that ESCC cells with the overexpression of rs2241057[G] had a significant lower level of retinoic acid, compared with the overexpression of rs2241057[A] or the control vector. In addition, the CYP26B1 overexpression and knock-out ESCC cells affected cell proliferation rate both in vitro and in vivo. These results highlighted the carcinogenicity of CYP26B1 related to the ATRA metabolism in ESCC risk.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Ácido Retinoico 4 Hidroxilase/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Estudos de Casos e Controles , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Tretinoína
13.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175940

RESUMO

Powdery mildew is a serious problem in tomato production; therefore, the PM-resistant tomato inbred line, '63187', and the susceptible tomato variety, 'Moneymaker (MM)', were used as experimental materials for the combined analysis of transcriptome and widely targeted metabolome on tomato leaves at 0 h post inoculation (hpi), 12 hpi, and 48 hpi. The results indicated that 276 genes were expressed in all treatments, and the K-means cluster analysis showed that these genes were divided into eight classes in '63187' and ten classes in 'MM'. KEGG enrichment showed that amino acid metabolism, signal transduction, energy metabolism, and other secondary metabolites biosynthesis pathways were significantly enriched. Interestingly, the analysis of WRKY family transcription factors (TFs) showed that the expression of four TFs in '63187' increased with no obvious change in 'MM'; and the expression of one TF in 'MM' increased with no obvious change in '63187'. The combined analysis revealed that both phenylpropanoid biosynthesis and flavonoid biosynthesis pathways were enriched in '63187' and 'MM'. In '63187', six metabolites involved in this pathway were downregulated, and four genes were highly expressed, while in 'MM', three metabolites were upregulated, four metabolites were downregulated, and ten genes were highly expressed. These metabolites and genes might be candidates for PM resistance or susceptibility in subsequent studies. These results provide favorable molecular information for the study of the different resistances of tomatoes to PM, and they provide a basis for the breeding of tomato varieties resistant to PM.


Assuntos
Ascomicetos , Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/genética , Ascomicetos/genética , Melhoramento Vegetal , Erysiphe , Metaboloma , Resistência à Doença/genética , Doenças das Plantas/genética
14.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569373

RESUMO

The photoperiod is the predominant environmental factor that governs seasonal reproduction in animals; however, the underlying molecular regulatory mechanism has yet to be fully elucidated. Herein, Yangzhou geese (Anser cygnoides) were selected at the spring equinox (SE), summer solstice (SS), autumn equinox (AE), and winter solstice (WS), and the regulation of seasonal reproduction via the light-driven cyclical secretion of pineal melatonin was investigated. We show that there were seasonal variations in the laying rate and GSI, while the ovarian area decreased 1.5-fold from the SS to the AE. Moreover, not only did the weight and volume of the pineal gland increase with a shortened photoperiod, but the secretory activity was also enhanced. Notably, tissue distribution further revealed seasonal oscillations in melatonin receptors (Mtnrs) in the pineal gland and the hypothalamus-pituitary-gonadal (HPG) axis. The immunohistochemical staining indicated higher Mtnr levels due to the shortened photoperiod. Furthermore, the upregulation of aralkylamine N-acetyltransferase (Aanat) was observed from the SS to the AE, concurrently resulting in a downregulation of the gonadotrophin-releasing hormone (GnRH) and gonadotropins (GtHs). This trend was also evident in the secretion of hormones. These data indicate that melatonin secretion during specific seasons is indicative of alterations in the photoperiod, thereby allowing for insight into the neuroendocrine regulation of reproduction via an intrinsic molecular depiction of external photoperiodic variations.


Assuntos
Melatonina , Glândula Pineal , Animais , Melatonina/fisiologia , Glândula Pineal/fisiologia , Fotoperíodo , Estações do Ano , Gansos , Reprodução/fisiologia
15.
Angew Chem Int Ed Engl ; 62(37): e202308837, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37477109

RESUMO

Solid-state electrolytes (SSEs) with high ionic conductivity and superior stability are considered to be a key technology for the safe operation of solid-state lithium batteries. However, current SSEs are incapable of meeting the requirements for practical solid-state lithium batteries. Here we report a general strategy for achieving high-performance SSEs by engineering polymers of intrinsic microporosity (PIMs). Taking advantage of the interconnected ion pathways generated from the ionizable groups, high ionic conductivity (1.06×10-3  S cm-1 at 25 °C) is achieved for the PIMs-based SSEs. The mechanically strong (50.0 MPa) and non-flammable SSEs combine the two superiorities of outstanding Li+ conductivity and electrochemical stability, which can restrain the dendrite growth and prevent Li symmetric batteries from short-circuiting even after more than 2200 h cycling. Benefiting from the rational design of SSEs, PIMs-based SSEs Li-metal batteries can achieve good cycling performance and superior feasibility in a series of withstand abuse tests including bending, cutting, and penetration. Moreover, the PIMs-based SSEs endow high specific capacity (11307 mAh g-1 ) and long-term discharge/charge stability (247 cycles) for solid-state Li-O2 batteries. The PIMs-based SSEs present a powerful strategy for enabling safe operation of high-energy solid-state batteries.

16.
Angew Chem Int Ed Engl ; 62(44): e202311739, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37723129

RESUMO

Rechargeable lithium-oxygen (Li-O2 ) batteries with high theoretical energy density are considered as promising candidates for portable electronic devices and electric vehicles, whereas their commercial application is hindered due to poor cyclic stability caused by the sluggish kinetics and cathode passivation. Herein, the intrinsic stress originated from the growth and decomposition of the discharge product (lithium peroxide, Li2 O2 ) is employed as a microscopic pressure resource to induce the built-in electric field, further improving the reaction kinetics and interfacial Lithium ion (Li+ ) transport during cycling. Piezopotential caused by the intrinsic stress-strain of solid Li2 O2 is capable of providing the driving force for the separation and transport of carriers, enhancing the Li+ transfer, and thus improving the redox reaction kinetics of Li-O2 batteries. Combined with a variety of in situ characterizations, the catalytic mechanism of barium titanate (BTO), a typical piezoelectric material, was systematically investigated, and the effect of stress-strain transformation on the electrochemical reaction kinetics and Li+ interface transport for the Li-O2 batteries is clearly established. The findings provide deep insight into the surface coupling strategy between intrinsic stress and electric fields to regulate the electrochemical reaction kinetics behavior and enhance the interfacial Li+ transport for battery system.

17.
J Org Chem ; 87(6): 3978-3988, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35254832

RESUMO

Nitrogen, phosphorus, and oxygen codoped carbon catalysts were successfully synthesized using dried yeast powder as a pyrolysis precursor. The yeast-derived heteroatom-doped carbon (yeast@C) catalysts exhibited outstanding performance in the oxidation of Csp3-H bonds to ketones and esters, giving excellent product yields (of up to 98% yield) without organic solvents at low O2 pressure (0.1 MPa). The catalytic oxidation protocol exhibited a broad range of substrates (38 examples) with good functional group tolerance, excellent regioselectivity, and synthetic utility. The yeast-derived heteroatom-doped carbon catalysts showed good reusability and stability after recycling six times without any significant loss of activity. Experimental results and DFT calculations proved the important role of N-oxide (N+-O-) on the surface of yeast@C and a reasonable carbon radical mechanism.


Assuntos
Nitrogênio , Fermento Seco , Carbono/química , Catálise , Nitrogênio/química , Oxigênio , Fósforo , Saccharomyces cerevisiae
18.
Health Care Manag Sci ; 25(2): 187-190, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35292872

RESUMO

A substantial number of United States (U.S.) hospitals have closed in recent years. The trend of closures has accelerated during the COVID-19 pandemic, as hospitals have experienced financial hardship from reduced patient volume and elective surgery cases, as well as the thin financial margins for treating patients with COVID-19. This trend of hospital closures is concerning for patients, healthcare providers, and policymakers. In this current opinion piece, we first describe the challenges caused by hospital closures and discuss what policymakers should know based on the existing research. We then discuss unique opportunities for researchers to inform policymakers by conducting careful studies that can shed light on different implications, trade-offs, and consequences of various strategies that can be followed.


Assuntos
COVID-19 , Procedimentos Cirúrgicos Eletivos , Fechamento de Instituições de Saúde , Pessoal de Saúde , Humanos , Pandemias , Estados Unidos/epidemiologia
19.
Acta Biochim Biophys Sin (Shanghai) ; 54(7): 1008-1020, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35713314

RESUMO

Expression of transmembrane protein 106A (TMEM106A) has been reported to be dysregulated in several types of cancers. However, the role of TMEM106A in hepatocellular carcinoma (HCC) is still unknown. In the present study, we demonstrate that TMEM106A is markedly downregulated in HCC compared with normal liver tissue. In particular, tumor-specific DNA methylation of TMEM106A is frequently observed in tumor tissues from HCC patients. Immunohistochemistry and pyrosequencing reveal a significant relationship between TMEM106A methylation and downregulation of protein expression. Receiver operating characteristic (ROC) curve analysis reveals that methylation of TMEM106A in tumor samples is different from that in non-malignant adjacent tissues of HCC patients. Moreover, HCC patients with TMEM106A hypermethylation have a poor clinical prognosis. 5-Aza-2'-deoxycytidin treatment of hypermethylated TMEM106A in highly metastatic HCC cells increases the expression of TMEM106A. Functional assays reveal that overexpression of TMEM106A significantly suppresses the malignant behavior of HCC cells in vitro and decreases tumorigenicity and lung metastasis in vivo. Mechanistically, TMEM106A inhibits epithelial mesenchymal transition (EMT) of HCC cells through inactivation of the Erk1/2/Slug signaling pathway. In conclusion, our findings demonstrate that TMEM106A is an inhibitor of HCC EMT and metastasis, and TMEM106A is often transcriptionally downregulated by promoter methylation, which results in reduced levels of TMEM106A protein and predicts poor survival outcomes for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Metilação de DNA , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Invasividade Neoplásica/genética , Metástase Neoplásica
20.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077060

RESUMO

Type III and type I interferon have similar mechanisms of action, and their different receptors lead to different distributions in tissue. On mucosal surfaces, type III interferon exhibits strong antiviral activity. Porcine epidemic diarrhea virus (PEDV) is an economically important enteropathogenic coronavirus, which can cause a high incidence rate and mortality in piglets. Here, we demonstrate that porcine interferon lambda 1 (pIFNL1) and porcine interferon lambda 3 (pIFNL3) can inhibit the proliferation of vesicular stomatitis virus with an enhanced green fluorescent protein (VSV-EGFP) in different cells, and also show strong antiviral activity when PEDV infects Vero cells. Both forms of pIFNLs were shown to be better than porcine interferon alpha (pIFNα), the antiviral activity of pIFNL1 is lower than that of pIFNL3. Therefore, our results provide experimental evidence for the inhibition of PEDV infection by pIFNLs, which may provide a promising treatment for the prevention and treatment of Porcine epidemic diarrhea (PED) in piglets.


Assuntos
Interferon Tipo I , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Chlorocebus aethiops , Interferon Tipo I/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Células Vero
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa