Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 182(1): 73-84.e16, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32425270

RESUMO

The COVID-19 pandemic urgently needs therapeutic and prophylactic interventions. Here, we report the rapid identification of SARS-CoV-2-neutralizing antibodies by high-throughput single-cell RNA and VDJ sequencing of antigen-enriched B cells from 60 convalescent patients. From 8,558 antigen-binding IgG1+ clonotypes, 14 potent neutralizing antibodies were identified, with the most potent one, BD-368-2, exhibiting an IC50 of 1.2 and 15 ng/mL against pseudotyped and authentic SARS-CoV-2, respectively. BD-368-2 also displayed strong therapeutic and prophylactic efficacy in SARS-CoV-2-infected hACE2-transgenic mice. Additionally, the 3.8 Å cryo-EM structure of a neutralizing antibody in complex with the spike-ectodomain trimer revealed the antibody's epitope overlaps with the ACE2 binding site. Moreover, we demonstrated that SARS-CoV-2-neutralizing antibodies could be directly selected based on similarities of their predicted CDR3H structures to those of SARS-CoV-neutralizing antibodies. Altogether, we showed that human neutralizing antibodies could be efficiently discovered by high-throughput single B cell sequencing in response to pandemic infectious diseases.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/isolamento & purificação , Linfócitos B/imunologia , Infecções por Coronavirus/imunologia , Pneumonia Viral/imunologia , Análise de Célula Única , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/metabolismo , COVID-19 , Convalescença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Pandemias , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Éxons VDJ
2.
Trends Genet ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38734482

RESUMO

Genome-wide association studies (GWASs) have identified numerous genetic loci associated with human traits and diseases. However, pinpointing the causal genes remains a challenge, which impedes the translation of GWAS findings into biological insights and medical applications. In this review, we provide an in-depth overview of the methods and technologies used for prioritizing genes from GWAS loci, including gene-based association tests, integrative analysis of GWAS and molecular quantitative trait loci (xQTL) data, linking GWAS variants to target genes through enhancer-gene connection maps, and network-based prioritization. We also outline strategies for generating context-dependent xQTL data and their applications in gene prioritization. We further highlight the potential of gene prioritization in drug repurposing. Lastly, we discuss future challenges and opportunities in this field.

3.
Proc Natl Acad Sci U S A ; 120(49): e2310367120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38011566

RESUMO

Existing single-cell bisulfite-based DNA methylation analysis is limited by low DNA recovery, and the measurement of 5hmC at single-base resolution remains challenging. Here, we present a bisulfite-free single-cell whole-genome 5mC and 5hmC profiling technique, named Cabernet, which can characterize 5mC and 5hmC at single-base resolution with high genomic coverage. Cabernet utilizes Tn5 transposome for DNA fragmentation, which enables the discrimination between different alleles for measuring hemi-methylation status. Using Cabernet, we revealed the 5mC, hemi-5mC and 5hmC dynamics during early mouse embryo development, uncovering genomic regions exclusively governed by active or passive demethylation. We show that hemi-methylation status can be used to distinguish between pre- and post-replication cells, enabling more efficient cell grouping when integrated with 5mC profiles. The property of Tn5 naturally enables Cabernet to achieve high-throughput single-cell methylome profiling, where we probed mouse cortical neurons and embryonic day 7.5 (E7.5) embryos, and constructed the library for thousands of single cells at high efficiency, demonstrating its potential for analyzing complex tissues at substantially low cost. Together, we present a way of high-throughput methylome and hydroxymethylome detection at single-cell resolution, enabling efficient analysis of the epigenetic status of biological systems with complicated nature such as neurons and cancer cells.


Assuntos
5-Metilcitosina , Metilação de DNA , Animais , Camundongos , Sulfitos , Análise de Sequência de DNA/métodos , Citosina
4.
Appl Environ Microbiol ; 89(1): e0158722, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602318

RESUMO

The two-component system RhpRS was initially identified as a regulator of genes encoding the type III secretion system (T3SS) in Pseudomonas syringae. Phosphorylated RhpR (P-RhpR) negatively regulates the T3SS genes by repressing the hrpR promoter, but directly activates the expression of a small gene named here as grlp. Here, we show that grlp is expressed higher in rich medium than in minimal medium in P. s. pv. tomato DC3000 and encodes a glycine rich lipoprotein (GrlP) located in the outer membrane (OM). The grlp gene has a pleiotropic effect on bacterial behaviors such as reductions in pathogenicity, swimming motility, biofilm formation, tolerance to various stresses and antibiotics, and long-term survival when overexpressed, but induces these responses when it is deleted in P. s. pv. tomato DC3000. Overexpression of grlp increases the size of periplasm while deletion of grlp decreases the periplasmic space. Further, GrlP interacts with OprI, the ortholog of E. coli OM lipoprotein Lpp, a key player in determining the size of periplasm and mechanic stiffness of the OM by tethering the OM to peptidoglycan (PG) in periplasm. As periplasmic space and OM mechanics play central roles in regulating bacterial physiology, we speculate that GrlP probably imposes its functions on bacterial physiology by regulating the periplasmic space and OM mechanics. These findings suggest that the T3SS gene regulation is closely coordinated with bacterial cell envelope properties by RhpRS in P. syringe. IMPORTANCE The OM of Gram-negative bacteria is the most front line in contact with extracellular milieu. OM is not only a protective layer, but also a structure that determines the envelope stiffness. Recent evidence indicated that components determining the periplasmic space and cross-links of lipopolysaccharide on the OM play key roles in regulating the mechanical properties of the OM. However, whether the OM composition and mechanical properties are coordinated with the expression of the T3SS genes is unknown. Here, we found that the two-component system (TCS) regulator P-RhpR, a direct repressor of the T3SS regulator hrpRS operon, directly activates the expression of the OM lipoprotein gene grlp bearing a function in regulating the periplasmic space. This finding suggests a coordination between the OM properties and the T3SS gene regulation and reveals a new target for control of the T3SS gene expression and bacterial pathogenicity.


Assuntos
Periplasma , Sistemas de Secreção Tipo III , Sistemas de Secreção Tipo III/genética , Periplasma/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pseudomonas syringae/genética , Regulação Bacteriana da Expressão Gênica
5.
PLoS Pathog ; 15(4): e1007673, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30998769

RESUMO

Many plant bacterial pathogens including Pseudomonas species, utilize the type III secretion system (T3SS) to deliver effector proteins into plant cells. Genes encoding the T3SS and its effectors are repressed in nutrient-rich media but are rapidly induced after the bacteria enter a plant or are transferred into nutrient-deficient media. To understand how the T3SS genes are regulated, we screened for P. savastanoi pv. phaseolicola (Psph) mutants displaying diminished induction of avrPto-luc, a reporter for the T3SS genes, in Arabidopsis. A mutant carrying transposon insertion into a gene coding for a small functional unknown protein, designated as rhpC, was identified that poorly induced avrPto-luc in plants and in minimal medium (MM). Interestingly, rhpC is located immediately downstream of a putative metalloprotease gene named rhpP, and the two genes are organized in an operon rhpPC; but rhpP and rhpC displayed different RNA expression patterns in nutrient-rich King's B medium (KB) and MM. Deletion of the whole rhpPC locus did not significantly affect the avrPto-luc induction, implying coordinated actions of rhpP and rhpC in regulating the T3SS genes. Further analysis showed that RhpC was a cytoplasmic protein that interacted with RhpP and targeted RhpP to the periplasm. In the absence of RhpC, RhpP was localized in the cytoplasm and caused a reduction of HrpL, a key regulator of the T3SS genes, and also reduced the fitness of Psph. Expression of RhpP alone in E. coli inhibited the bacterial growth. The detrimental effect of RhpP on the fitness of Psph and E. coli required metalloprotease active sites, and was repressed when RhpC was co-expressed with RhpP. The coordination between rhpP and rhpC in tuning the T3SS gene expression and cell fitness reveals a novel regulatory mechanism for bacterial pathogenesis. The function of RhpP in the periplasm remains to be studied.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Óperon , Pseudomonas/classificação , Pseudomonas/genética , Sistemas de Secreção Tipo III/metabolismo , Fatores de Virulência/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Mutação , Phaseolus/microbiologia , Regiões Promotoras Genéticas , Pseudomonas/crescimento & desenvolvimento , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/genética
6.
Nat Comput Sci ; 3(7): 630-643, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38177744

RESUMO

Deconvoluting cell-state abundances from bulk RNA-sequencing data can add considerable value to existing data, but achieving fine-resolution and high-accuracy deconvolution remains a challenge. Here we introduce MeDuSA, a mixed model-based method that leverages single-cell RNA-sequencing data as a reference to estimate cell-state abundances along a one-dimensional trajectory in bulk RNA-sequencing data. The advantage of MeDuSA lies primarily in estimating cell abundance in each state while fitting the remaining cells of the same type individually as random effects. Extensive simulations and real-data benchmark analyses demonstrate that MeDuSA greatly improves the estimation accuracy over existing methods for one-dimensional trajectories. Applying MeDuSA to cohort-level RNA-sequencing datasets reveals associations of cell-state abundances with disease or treatment conditions and cell-state-dependent genetic control of transcription. Our study provides a high-accuracy and fine-resolution method for cell-state deconvolution along a one-dimensional trajectory and demonstrates its utility in characterizing the dynamics of cell states in various biological processes.


Assuntos
Regulação da Expressão Gênica , RNA , Humanos , Análise de Sequência de RNA
7.
Mol Plant Pathol ; 23(1): 92-103, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34628712

RESUMO

We previously observed decreased expression of rice OsmiR159a.1 on infection with the bacterial blight-causing pathogen Xanthomonas oryzae pv. oryzae (Xoo), and identified the OsLRR_RLK (leucine-rich repeat_ receptor like kinase) gene as an authentic target of OsmiR159a.1. Here, we found that a Tos17 insertion mutant of LRR_RLK displayed increasing temporal resistance to Xoo, whereas the LRR_RLK overexpression lines were susceptible to the pathogen early on in the infection, indicating that LRR_RLK encodes a repressor of rice resistance to Xoo infection, and it was renamed as RIR1 (Rice Immunity Repressor 1). RIR1 overexpression plants were more susceptible to Xoo at late growth stage, suggesting that RIR1 mRNA levels are negatively correlated with the resistance of rice against Xoo. We discovered that OsmiR159a.1 repression in Xoo-infected plants was largely dependent on the pathogen's type III secretion system. Co-immunoprecipitation, bimolecular fluoresence complementation, and pull-down assays indicated that RIR1 interacted with the NADH-ubiquinone oxidoreductase (NUO) 51-kDa subunit of the mitochondrial complex I through its kinase domain. Notably, impairment of RIR1 or overexpression of NUO resulted in reactive oxygen species accumulation and enhanced expression of pathogen-resistance genes, including jasmonic acid pathway genes. We propose that pathogens may inhibit OsmiR159 to interfere with the RIR1-NUO interaction, and subsequently depression of rice immune signalling pathways. The resistance genes manipulated by Xoo can be a probe to explore the regulatory network during host-pathogen interactions.


Assuntos
Oryza , Xanthomonas , Complexo I de Transporte de Elétrons , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/metabolismo
8.
Front Pharmacol ; 13: 811962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250562

RESUMO

Low back pain (LBP) is a common problem, but the efficacy of pharmacological therapies remains controversial. Therefore, we aimed to comprehensively evaluate and quantitatively rank various pharmacological therapies for patients with low back pain. Two meta-analyses were performed: an initial pair-wise meta-analysis, followed by network meta-analysis using a random-effects Bayesian model. We included randomized controlled trials comparing placebos, non-steroidal anti-inflammatory drugs, opioids, skeletal muscular relaxants, pregabalin (or gabapentin), and some drug combinations. The primary and secondary outcomes were pain intensity and physical function. Eighty-eight eligible trials with 21,377 patients were included. Here, we show that only skeletal muscle relaxants significantly decreased the pain intensity of acute (including subacute) low back pain. Several kinds of drugs significantly decreased the pain of chronic low back pain, but only opioids and cyclo-oxygenase 2-selective non-steroidal anti-inflammatory drugs effectively reduced pain and improved function. Pregabalin (or gabapentin) seemed to be an effective treatment to relieve pain, but it should be used with caution for low back pain.

9.
Cell Res ; 31(7): 732-741, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34021265

RESUMO

SARS-CoV-2 variants could induce immune escape by mutations on the receptor-binding domain (RBD) and N-terminal domain (NTD). Here we report the humoral immune response to circulating SARS-CoV-2 variants, such as 501Y.V2 (B.1.351), of the plasma and neutralizing antibodies (NAbs) elicited by CoronaVac (inactivated vaccine), ZF2001 (RBD-subunit vaccine) and natural infection. Among 86 potent NAbs identified by high-throughput single-cell VDJ sequencing of peripheral blood mononuclear cells from vaccinees and convalescents, near half anti-RBD NAbs showed major neutralization reductions against the K417N/E484K/N501Y mutation combination, with E484K being the dominant cause. VH3-53/VH3-66 recurrent antibodies respond differently to RBD variants, and K417N compromises the majority of neutralizing activity through reduced polar contacts with complementarity determining regions. In contrast, the 242-244 deletion (242-244Δ) would abolish most neutralization activity of anti-NTD NAbs by interrupting the conformation of NTD antigenic supersite, indicating a much less diversity of anti-NTD NAbs than anti-RBD NAbs. Plasma of convalescents and CoronaVac vaccinees displayed comparable neutralization reductions against pseudo- and authentic 501Y.V2 variants, mainly caused by E484K/N501Y and 242-244Δ, with the effects being additive. Importantly, RBD-subunit vaccinees exhibit markedly higher tolerance to 501Y.V2 than convalescents, since the elicited anti-RBD NAbs display a high diversity and are unaffected by NTD mutations. Moreover, an extended gap between the third and second doses of ZF2001 leads to better neutralizing activity and tolerance to 501Y.V2 than the standard three-dose administration. Together, these results suggest that the deployment of RBD-vaccines, through a third-dose boost, may be ideal for combating SARS-CoV-2 variants when necessary, especially for those carrying mutations that disrupt the NTD supersite.


Assuntos
Anticorpos Neutralizantes/imunologia , Vacinas contra COVID-19/farmacologia , COVID-19/imunologia , COVID-19/prevenção & controle , Imunidade Humoral , SARS-CoV-2/imunologia , Vacinas de Produtos Inativados/farmacologia , Animais , Anticorpos Neutralizantes/sangue , COVID-19/sangue , Vacinas contra COVID-19/imunologia , Linhagem Celular , Células HEK293 , Humanos , Modelos Moleculares , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/farmacologia
10.
Mol Plant Pathol ; 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29517846

RESUMO

During plant-pathogen interactions, pathogenic bacteria have evolved multiple strategies to cope with the sophisticated defence systems of host plants. Proline iminopeptidase (PIP) is essential to Xanthomonas campestris pv. campestris (Xcc) virulence, and is conserved in many plant-associated bacteria, but its pathogenic mechanism remains unclear. In this study, we found that disruption of pip in Xcc enhanced its flagella-mediated bacterial motility by decreasing intracellular bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) levels, whereas overexpression of pip in Xcc restricted its bacterial motility by elevating c-di-GMP levels. We also found that PIP is a type III secretion system-dependent effector capable of eliciting a hypersensitive response in non-host, but not host plants. When we transformed pip into the host plant Arabidopsis, higher bacterial titres were observed in pip-overexpressing plants relative to wild-type plants after Xcc inoculation. The repressive function of PIP on plant immunity was dependent on PIP's enzymatic activity and acted through interference with the salicylic acid (SA) biosynthetic and regulatory genes. Thus, PIP simultaneously regulates two distinct regulatory networks during plant-microbe interactions, i.e. it affects intracellular c-di-GMP levels to coordinate bacterial behaviour, such as motility, and functions as a type III effector translocated into plant cells to suppress plant immunity. Both processes provide bacteria with the regulatory potential to rapidly adapt to complex environments, to utilize limited resources for growth and survival in a cost-efficient manner and to improve the chances of bacterial survival by helping pathogens to inhabit the internal tissues of host plants.

11.
Acta Biomater ; 68: 15-28, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294376

RESUMO

Muscle injury and defect affect people's quality of life, and effective treatment is lacking. Herein, we generated a scaffold to obtain decellularized porcine Achilles tendon myotendinous junction (D-MTJ) extracellular matrix (ECM) with well-preserved native biphasic hierarchical structure, biological composition, and excellent mechanical properties for muscle regeneration. The combined use of potassium chloride, potassium iodide, Triton-X 100, and sodium-dodecyl sulfate (SDS) can completely remove the main immunogenicity, while maintaining the major biological components and microstructure. The specific biomechanics of D-MTJ is comparable to the native muscle-tendon physiological conditions. Additionally, the D-MTJ ECM scaffold induced minimal immunological reaction (histology analysis) through rat subcutaneous implantation. Moreover, in vitro, muscle satellite cells adhered, proliferated, and infiltrated into the D-MTJ scaffold, and myofiber-like cell differentiation was observed as shown by increased expression of myogenesis-related genes during culture. In vivo, newly formed myofibers were observed in a muscle defect model with D-MTJ orthotopic transplantation, while the control group presented mostly with fibrous tissue deposition. Additionally, the number of Myod and MyHC-positive cells in the ECM scaffold group was higher at day 30. We preliminary explored the mechanisms underlying D-MTJ-mediated muscle regeneration, which may be attributed to its specific biphasic hierarchical structure, bio-components, and attractiveness for myogenesis cells. In conclusion, our findings suggest the D-MTJ ECM scaffold prepared in this study is a promising choice for muscle regeneration. STATEMENT OF SIGNIFICANCE: This study is the first to use decellularization technology obtaining the specifically decellularized myotendinous junction (D-MTJ) with well-preserved biphasic hierarchical structure and constituents, excellent mechanical properties and good biocompatibility. The D-MTJ was further proved to be efficient for muscle regeneration in vitro and in vivo, and the underlying mechanisms may be attributed to its specifically structure and constituents, improved myogenesis and good preservation of repair-related factors. Our study may provide basis for the decellularization of other biphasic hierarchical tissues and a platform for further studies on muscle fiber and tendon integrations in vitro.


Assuntos
Junções Célula-Matriz/metabolismo , Matriz Extracelular/metabolismo , Músculos/fisiologia , Regeneração , Tendões/fisiologia , Animais , Morte Celular , Diferenciação Celular , Junções Célula-Matriz/ultraestrutura , Matriz Extracelular/ultraestrutura , Análise de Elementos Finitos , Masculino , Proteômica , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sus scrofa , Alicerces Teciduais/química
13.
Clin J Pain ; 34(11): 1039-1046, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29727303

RESUMO

OBJECTIVE: To evaluate the difference between combination pharmacotherapy and monotherapy on low back pain (LBP). METHODS: We searched PubMed, Embase, and Cochrane Central Register of Controlled Trials databases up to March 14, 2017. Two authors independently extracted the data and assessed the validity of included trials. RESULTS: Twelve randomized controlled trials comparing the effect of LBP combination pharmacotherapy to monotherapy or placebo were included. In chronic LBP, combination pharmacotherapy was more effective than placebo in pain relief (P<0.001; standardized mean difference [SMD], -0.50; 95% confidence interval [CI], -0.70 to -0.29; I²=0%) and function improvement (P<0.001; SMD, -0.27; 95% CI, -0.41 to -0.13; I²=0%) and showed improved pain relief compared with monotherapy (P<0.001; SMD, -0.84; 95% CI, -1.12 to -0.56; I²=0%). Combination pharmacotherapy did not outperform monotherapy pain relief and function improvement in acute LBP. In addition, risk of adverse effects of combination pharmacotherapy was much higher compared with placebo (P<0.05; relative risk, 1.80; 95% CI, 1.33-2.42; I²>50%) and monotherapy (P<0.05; relative risk, 1.44; 95% CI, 1.01-2.06; I²>50%) in both settings. DISCUSSION: Combination pharmacotherapy is more effective than placebo or monotherapy in the management of pain and disability in chronic LBP, but not in acute LBP. Further, combination pharmacotherapy has a higher risk of adverse effects than placebo and monotherapy.


Assuntos
Dor Lombar/tratamento farmacológico , Dor Aguda/tratamento farmacológico , Dor Crônica/tratamento farmacológico , Quimioterapia Combinada/efeitos adversos , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Sheng Wu Gong Cheng Xue Bao ; 33(9): 1640-1653, 2017 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-28956407

RESUMO

Biofilms are complex three-dimensional bacterial assemblages that attach to biotic or abiotic solid surfaces, and frequently embed within a self-produced matrix of extracellular polymeric substances. Biofilm formation is a microbial defense response to biotic and abiotic stresses, and a key factor for survival in adverse environments. A wide variety of microorganisms can colonize distant tissues of higher plants, such as leaves, vascular network and roots, and adhere to the surface of the tissues to form biofilms. The dynamic processes in forming biofilms in response to plant internal environment are key steps required for full virulence of phytopathogenic bacteria. Exploring the mechanisms involved in regulation of bacterial biofilms is important for understanding the plant-pathogens interactions. In this review, we summarized the research progresses related to the biofilms of bacterial phytopathogens, including biofilm characteristics, essential regulatory mechanisms and key signals affecting the transition between a planktonic lifestyle and multicellular behavior.


Assuntos
Bactérias/patogenicidade , Biofilmes , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Plantas/microbiologia , Virulência
15.
Mater Sci Eng C Mater Biol Appl ; 77: 1290-1301, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28532007

RESUMO

Tendon injuries impose significant clinical burdens on healthcare systems worldwide. At present, no therapeutic methods can cure tendon injuries in an ideal manner. With the development and improvement of decellularization technology, tendon extracellular matrix (ECM) can develop into novel scaffolds with potential for repairing injured tendons. Proper agents and decellularization protocols were developed to obtain tendon ECMs, and the method used to recellularize the tendon ECM was explored to create bio-functional neo-tendons for transplants. Further, preliminary testing was done to evaluate the reparative capacity of decellularized tendon scaffolds (DTSs). Here, we assess developments in tendon decellularization and recellularization processes, as well as the possibility for advancing DTSs into clinical applications based on recent findings.


Assuntos
Tendões , Matriz Extracelular , Humanos , Estudos Prospectivos , Alicerces Teciduais
16.
ACS Biomater Sci Eng ; 3(12): 3503-3514, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33445386

RESUMO

The periosteum plays a key role in bone regeneration and an artificial bionic material is urgently required. The periostea on the tibia and skull differ with respect to the types of cells, microstructure, and components, leading to different biological functions and biomechanical properties. We aimed to prepare decellularized periosteum scaffolds derived from different origins and evaluate their angiogenic and osteogenic activities. Histological assessment of α-smooth muscle actin, bone morphogenetic protein-2, and alkaline phosphatase in tibial and calvarial periosteum tissues provided preliminary information on their differing angiogenic and osteogenic properties. We developed decellularization protocols to completely remove the periosteum cellular components and for good maintenance of the hierarchical multilayer structures and components of the extracellular matrix (ECM) with no cytotoxicity. Moreover, using a chicken egg chorioallantoic membrane assay and a nude mouse implantation model, we found that tibia-derived periosteum ECM had superior osteogenic activity and calvarium-derived ECM had good angiogenic activity. The preliminary mechanisms of differing activities were then evaluated by osteogenesis- and angiogenesis-related gene expression in human umbilical vein endothelial cell- and MC-3T3 cell-seeded ECM scaffolds. Thus, this study provides periosteum biomaterials that are derived from specific tissues and have different functional properties and structures, for use in bone regeneration.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa