Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 559, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840048

RESUMO

BACKGROUND: The crossbreeding of specialized beef cattle breeds with Chinese indigenous cattle is a common method of genetic improvement. Xia'nan cattle, a crossbreed of Charolais and Nanyang cattle, is China's first specialized beef cattle breed with independent intellectual property rights. After more than two decades of selective breeding, Xia'nan cattle exhibit a robust physique, good environmental adaptability, good tolerance to coarse feed, and high meat production rates. This study analyzed the population genetic structure, genetic diversity, and genomic variations of Xia'nan cattle using whole-genome sequencing data from 30 Xia'nan cattle and 178 published cattle genomic data. RESULT: The ancestry estimating composition analysis showed that the ancestry proportions for Xia'nan cattle were mainly Charolais with a small amount of Nanyang cattle. Through the genetic diversity studies (nucleotide diversity and linkage disequilibrium decay), we found that the genomic diversity of Xia'nan cattle is higher than that of specialized beef cattle breeds in Europe but lower than that of Chinese native cattle. Then, we used four methods to detect genome candidate regions influencing the excellent traits of Xia'nan cattle. Among the detected results, 42 genes (θπ and CLR) and 131 genes (FST and XP-EHH) were detected by two different detection strategies. In addition, we found a region in BTA8 with strong selection signals. Finally, we conducted functional annotation on the detected genes and found that these genes may influence body development (NR6A1), meat quality traits (MCCC1), growth traits (WSCD1, TMEM68, MFN1, NCKAP5), and immunity (IL11RA, CNTFR, CCL27, SLAMF1, SLAMF7, NAA35, and GOLM1). CONCLUSION: We elucidated the genomic features and population structure of Xia'nan cattle and detected some selection signals in genomic regions potentially associated with crucial economic traits in Xia'nan cattle. This research provided a basis for further breeding improvements in Xia'nan cattle and served as a reference for genetic enhancements in other crossbreed cattle.


Assuntos
Variação Genética , Seleção Genética , Sequenciamento Completo do Genoma , Bovinos/genética , Animais , Sequenciamento Completo do Genoma/métodos , Desequilíbrio de Ligação , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Genoma , Genética Populacional , Cruzamento , Locos de Características Quantitativas , Fenótipo
2.
Anim Biotechnol ; 34(4): 1377-1383, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35108172

RESUMO

Recently, Coiled-coil serine-rich protein 1 (CCSER1) gene is reported to be related to economic traits in livestock, and become a hotspot. In our study, we detected CCSER1 gene CNV in 693 goats from six breeds (GZB, GZW, AN, BH, HG, TH) by quantitative real-time PCR (qPCR) and the association analysis between the types of CNV and growth traits. Then, CCSER1 gene expression pattern was discovered in seven tissues from NB goats. Our results showed that the CCSER1 gene copy numbers were distributed differently in the aforementioned six breeds. The type of CCSER1 gene CNV was significantly associated with body weight and heart girth traits in GZW goat, in which individuals with deletion type were dominant in body weight trait (P < 0.05), while the normal type individuals were more advantageous in heart girth trait (P < 0.01); and there was a significant association with heart girth in TH goat (P < 0.05), which normal type was the dominant one. The expression profile revealed that CCSER1 gene has the highest level in the lung, followed by the small intestine and heart. In conclusion, our result is dedicated to an in-depth study of the novel CCSER1 gene CNV site and to provide essential information for Chinese goats molecular selective breeding in the future.


Assuntos
Variações do Número de Cópias de DNA , Cabras , Humanos , Animais , Cabras/genética , Variações do Número de Cópias de DNA/genética , Fenótipo , Peso Corporal/genética , Cruzamento
3.
Anim Biotechnol ; 34(9): 4680-4686, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37093180

RESUMO

Copy number variation (CNV) is an important member of genetic structural variation that exists widely in animal genomes and is between 50 bp and several Mb in length and widely used in research's of animal genetics and breeding. ZNF679 is an important transcription factor, which has been found association with diseases in the human genome many times. This gene has also been found to be associated with cattle growth traits in previous re-sequencing studies. We tested the CNVs of the ZNF679 gene in 809 individuals from 7 Chinese cattle breeds and tested the association between the CNVs and growth traits in 552 individuals from 5 breeds. The results demonstrated the correlation the correlation between the CNVs of the ZNF679 gene and some Chinese cattle (QC cattle and XN cattle) growth traits. To sum up, this study indicated that ZNF679-CNVs can be used as a candidate gene for molecular genetic marker-assisted selection breeding for cattle growth traits to contribute to the development of genetic improvement of Chinese cattle.


Assuntos
Variações do Número de Cópias de DNA , Regulação da Expressão Gênica , Animais , Bovinos/genética , Humanos , Variações do Número de Cópias de DNA/genética , Fenótipo , Peso Corporal/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa